Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Mével, Catherine"
Sort by:
Zircon Dating of Oceanic Crustal Accretion
Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks.
Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E-68°E): Trace element compositions of along-axis dredged peridotites
The Southwest Indian Ridge is characterized by frequent outcrops of mantle rocks in a very slow spreading context. In situ measurements of trace element concentrations in pyroxenes of these rocks, and associated petrogenetic modeling, are reported. Overall, the measured compositions cover the whole range typically observed for abyssal peridotites. The greatest subkilometer‐scale compositional variability is observed in the region east of the Melville fracture zone. The best explanation for the observed variability is given by concurrent melting and migration of melts strongly enriched in the most incompatible rare earth elements, such as those produced by a garnet‐bearing source, or by refertilization with mixed garnet‐ and spinel‐derived partially aggregated melts. Because the regionally associated basalts bear no “garnet signature” in their chemical compositions, we conclude that the residual mantle preserves the signature of a mantle source component that does not appear in the erupted magmas. Comparison between along‐axis variations of basalt isotopic compositions and peridotite chemical compositions suggests that local isotopic enrichments displayed by some basalts can be associated with the “garnet signature” in the peridotite and that our sampling represents only a fraction of the global variability of the subaxial mantle. To the west of the Melville fracture zone, samples are more depleted and homogeneous at dredge scale. In addition to containing enriched components, petrologic modeling indicates that the peridotitic mantle beneath the entire section underwent (previous?) partial melting in the garnet stability field before melting at lower pressures. Key Points Some peridotites equilibrated in the shallow mantle with garnet‐derived melts Most peridotites equilibrated with a mixture of garnet‐ and spinel‐derived melts High subkilometer scale compositional variability reflects a heterogeneous MORB source
Isotopic portrayal of the Earth’s upper mantle flow field
It is now well established that oceanic plates sink into the lower mantle at subduction zones, but the reverse process of replacing lost upper-mantle material is not well constrained. Even whether the return flow is strongly localized as narrow upwellings or more broadly distributed remains uncertain. Here we show that the distribution of long-lived radiogenic isotopes along the world’s mid-ocean ridges can be used to map geochemical domains, which reflect contrasting refilling modes of the upper mantle. New hafnium isotopic data along the Southwest Indian Ridge delineate a sharp transition between an Indian province with a strong lower-mantle isotopic flavour and a South Atlantic province contaminated by advection of upper-mantle material beneath the lithospheric roots of the Archaean African craton. The upper mantle of both domains appears to be refilled through the seismically defined anomaly underlying South Africa and the Afar plume. Because of the viscous drag exerted by the continental keels, refilling of the upper mantle in the Atlantic and Indian domains appears to be slow and confined to localized upwellings. By contrast, in the unencumbered Pacific domain, upwellings seem comparatively much wider and more rapid. The distribution of long-lived radiogenic isotopes along the world's mid-ocean ridges can be used to map geochemical domains, reflecting contrasting refilling modes of the upper mantle. Refilling of the upper mantle in the Atlantic and Indian domains is slow and confined to localized upwellings, whereas in the Pacific, upwellings are comparatively much wider and more rapid.
Seafloor earthquake ruptures and mass wasting from the 2004 Mw 6.3 Les Saintes submarine earthquake
The seismic hazard posed by submarine faults and the capacity of submarine earthquakes to trigger mass wasting are poorly understood because we lack detailed characterizations of coseismic ruptures at the seafloor. Here, we present comprehensive mapping of a seafloor rupture caused by the 2004 M w 6.3 Les Saintes earthquake on the Roseau normal fault in the Lesser Antilles. We report the visual characteristics, displacement profile, and note pronounced asymmetry of the rupture that bears similarities with well-studied subaerial normal fault ruptures. We also identify footwall-derived mass wasted debris that locally cover the coseismic rupture, and show that ground accelerations of 0.1–0.2 g can trigger submarine mass wasting events in well consolidated bedrock along unstable, over-steepened, scarps. Our study demonstrates the potential of underwater vehicles for detailed mapping of seafloor ruptures and hints at a key role for earthquakes in shaping submarine bedrock landscapes by triggering mass wasting events.
The Kallisti Limnes, carbon dioxide-accumulating subsea pools
Natural CO 2 releases from shallow marine hydrothermal vents are assumed to mix into the water column and not accumulate into stratified seafloor pools. We present newly discovered shallow subsea pools located within the Santorini volcanic caldera of the Southern Aegean Sea, Greece, that accumulate CO 2 emissions from geologic reservoirs. This type of hydrothermal seafloor pool, containing highly concentrated CO 2 , provides direct evidence of shallow benthic CO 2 accumulations originating from sub-seafloor releases. Samples taken from within these acidic pools are devoid of calcifying organisms and channel structures among the pools indicate gravity driven flow, suggesting that seafloor release of CO 2 at this site may preferentially impact benthic ecosystems. These naturally occurring seafloor pools may provide a diagnostic indicator of incipient volcanic activity and can serve as an analog for studying CO 2 leakage and benthic accumulations from subsea carbon capture and storage sites.
A discontinuity in mantle composition beneath the southwest Indian ridge
The composition of mid-ocean-ridge basalt is known to correlate with attributes such as ridge topography 1 , 2 and seismic velocity in the underlying mantle 3 , and these correlations have been interpreted to reflect variations in the average extent and mean pressures of melting during mantle upwelling. In this respect, the eastern extremity of the southwest Indian ridge is of special interest, as its mean depth of 4.7 km (ref. 4 ), high upper-mantle seismic wave velocities 5 and thin oceanic crust of 4–5 km (ref. 6 ) suggest the presence of unusually cold mantle beneath the region. Here we show that basaltic glasses dredged in this zone, when compared to other sections of the global mid-ocean-ridge system, have higher Na 8.0 , Sr and Al 2 O 3 compositions, very low CaO/Al 2 O 3 ratios relative to TiO 2 and depleted heavy rare-earth element distributions. This signature cannot simply be ascribed to low-degree melting of a typical mid-ocean-ridge source mantle, as different geochemical indicators of the extent of melting 1 are mutually inconsistent. Instead, we propose that the mantle beneath ∼1,000 km of the southwest Indian ridge axis has a complex history involving extensive earlier melting events and interaction with partial melts of a more fertile source.
Hydrothermal alteration studies of gabbros from Northern Central Indian Ridge and their geodynamic implications
Mylonitic gabbro and altered gabbro were recovered from off-axis high and corner high locations at ridge-transform intersection, adjacent to Vityaz transform fault of the slow spreading (32–35 mm/yr, full spreading) Northern Central Indian Ridge. Both the varieties show signatures of extensive alteration caused due to interaction with sea water. Mylonitic gabbro represents high temperature metamorphism (∼700–800°C) and comprised of hornblende mineral which exhibits well defined foliation/gneissic appearance along with dynamically recrystallised plagioclase grains frequently intercalated with magnetite-ilmenite. Altered gabbro from corner high generally includes low temperature greenschist grade (∼300°C) mineralogical assemblages: chlorite, albite, quartz and locally magnesio hornblende. Crystal plastic deformation resulted in mylonite formation and often porphyroclasts of plagioclase and clinopyroxene grains, while altered gabbro locally exhibits cataclastic texture. Presence of Vityaz transform fault and adjacent megamullion at the weakly magmatic ridge-transform intersection and off-axis high locations prompted the present scenario very much conducive for hydrothermal circulation and further facilitate the exhumation of present suite of gabbro.
De la fabrique sociale aux violences urbaines
Les crises urbaines actuelles en France sont-elles le prolongement des conflits sociaux du XIXe siècle ou l'importation du ghetto à l'américaine? Guerre contre les pauvres ou ethnicisation? Pour éviter l'alternative de ce débat mal posé, il faut proposer une histoire sociale qui montre le renversement de la question politique dont l'enjeu, en raison de la capacité des groupes sociaux à faire sécession, à s'isoler et à s'ignorer, est désormais de refaire du commun, de faire société.
Isotopic portrayal of the Earth's upper mantle flow field
It is now well established that oceanic plates sink into the lower mantle at subduction zones, but the reverse process of replacing lost upper-mantle material is not well constrained. Even whether the return flow is strongly localized as narrow upwellings or more broadly distributed remains uncertain. Here we show that the distribution of long-lived radiogenic isotopes along the world's mid-ocean ridges can be used to map geochemical domains, which reflect contrasting refilling modes of the upper mantle. New hafnium isotopic data along the Southwest Indian Ridge delineate a sharp transition between an Indian province with a strong lower-mantle isotopic flavour and a South Atlantic province contaminated by advection of upper-mantle material beneath the lithospheric roots of the Archaean African craton. The upper mantle of both domains appears to be refilled through the seismically defined anomaly underlying South Africa and the Afar plume. Because of the viscous drag exerted by the continental keels, refilling of the upper mantle in the Atlantic and Indian domains appears to be slow and confined to localized upwellings. By contrast, in the unencumbered Pacific domain, upwellings seem comparatively much wider and more rapid.