Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Mühlemann, Anja"
Sort by:
Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals
In general, the solution to a regression problem is the minimizer of a given loss criterion and depends on the specified loss function. The nonparametric isotonic regression problem is special, in that optimal solutions can be found by solely specifying a functional. These solutions will then be minimizers under all loss functions simultaneously as long as the loss functions have the requested functional as the Bayes act. For the functional, the only requirement is that it can be defined via an identification function, with examples including the expectation, quantile, and expectile functionals. Generalizing classical results, we characterize the optimal solutions to the isotonic regression problem for identifiable functionals by rigorously treating these functionals as set-valued. The results hold in the case of totally or partially ordered explanatory variables. For total orders, we show that any solution resulting from the pool-adjacent-violators algorithm is optimal.
Nonlinear expectations of random sets
Sublinear functionals of random variables are known as sublinear expectations; they are convex homogeneous functionals on infinite-dimensional linear spaces. We extend this concept for set-valued functionals defined on measurable set-valued functions (which form a nonlinear space) or, equivalently, on random closed sets. This calls for a separate study of sublinear and superlinear expectations, since a change of sign does not alter the direction of the inclusion in the set-valued setting.We identify the extremal expectations as those arising from the primal and dual representations of nonlinear expectations. Several general construction methods for nonlinear expectations are presented and the corresponding duality representation results are obtained. On the application side, sublinear expectations are naturally related to depth trimming of multivariate samples, while superlinear ones can be used to assess utilities of multiasset portfolios.
Comparing imputation approaches to handle systematically missing inputs in risk calculators
Risk calculators based on statistical and/or mechanistic models have flourished and are increasingly available for a variety of diseases. However, in the day-to-day practice, their usage may be hampered by missing input variables. Certain measurements needed to calculate disease risk may be difficult to acquire, e.g. because they necessitate blood draws, and may be systematically missing in the population of interest. We compare several deterministic and probabilistic imputation approaches to surrogate predictions from risk calculators while accounting for uncertainty due to systematically missing inputs. The considered approaches predict missing inputs from available ones. In the case of probabilistic imputation, this leads to probabilistic prediction of the risk. We compare the methods using scoring techniques for forecast evaluation, with a focus on the Brier and CRPS scores. We also discuss the classification of patients into risk groups defined by thresholding predicted probabilities. While the considered procedures are not meant to replace fully-informed risk calculations, employing them to get first indications of risk distribution in the absence of at least one input parameter may find useful applications in medical practice. To illustrate this, we use the SCORE2 risk calculator for cardiovascular disease and a data set including medical data from 359 women, obtained from the gynecology department at the Inselspital in Bern, Switzerland. Using this data set, we mimic the situation where some input parameters, blood lipids and blood pressure, are systematically missing and compute the SCORE2 risk by probabilistic imputation of the missing variables based on the remaining input variables. We compare this approach to established imputation techniques like MICE by means of scoring rules and visualize in turn how probabilistic imputation can be used in sample size considerations.
Challenges of COVID-19 Case Forecasting in the US, 2020–2021
During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub ( https://covid19forecasthub.org ). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.
Challenges of COVID-19 Case Forecasting in the US, 2020–2021
During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.
Nonlinear expectations of random sets
Sublinear functionals of random variables are known as sublinear expectations; they are convex homogeneous functionals on infinite-dimensional linear spaces. We extend this concept for set-valued functionals defined on measurable set-valued functions (which form a nonlinear space), equivalently, on random closed sets. This calls for a separate study of sublinear and superlinear expectations, since a change of sign does not convert one to the other in the set-valued setting. We identify the extremal expectations as those arising from the primal and dual representations of them. Several general construction methods for nonlinear expectations are presented and the corresponding duality representation results are obtained. On the application side, sublinear expectations are naturally related to depth trimming of multivariate samples, while superlinear ones can be used to assess utilities of multiasset portfolios.
Isotonic regression for functionals of elicitation complexity greater than one
We study the non-parametric isotonic regression problem for bivariate elicitable functionals that are given as an elicitable univariate functional and its Bayes risk. Prominent examples for functionals of this type are (mean, variance) and (Value-at-Risk, Expected Shortfall), where the latter pair consists of important risk measures in finance. We present our results for totally ordered covariates but extenstions to partial orders are given in the appendix.
Optimal solutions to the isotonic regression problem
In general, the solution to a regression problem is the minimizer of a given loss criterion, and depends on the specified loss function. The nonparametric isotonic regression problem is special, in that optimal solutions can be found by solely specifying a functional. These solutions will then be minimizers under all loss functions simultaneously as long as the loss functions have the requested functional as the Bayes act. For the functional, the only requirement is that it can be defined via an identification function, with examples including the expectation, quantile, and expectile functionals. Generalizing classical results, we characterize the optimal solutions to the isotonic regression problem for such functionals, and extend the results from the case of totally ordered explanatory variables to partial orders. For total orders, we show that any solution resulting from the pool-adjacent-violators algorithm is optimal. It is noteworthy, that simultaneous optimality is unattainable in the unimodal regression problem, despite its close connection.
Nonlinear expectations of random sets
Sublinear functionals of random variables are known as sublinear expectations; they are convex homogeneous functionals on infinite-dimensional linear spaces. We extend this concept for set-valued functionals defined on measurable set-valued functions (which form a nonlinear space), equivalently, on random closed sets. This calls for a separate study of sublinear and superlinear expectations, since a change of sign does not convert one to the other in the set-valued setting. We identify the extremal expectations as those arising from the primal and dual representations of them. Several general construction methods for nonlinear expectations are presented and the corresponding duality representation results are obtained. On the application side, sublinear expectations are naturally related to depth trimming of multivariate samples, while superlinear ones can be used to assess utilities of multiasset portfolios.
Sources of Support and Their Benefits for New Primary School Teachers in Switzerland
In Switzerland, teacher education comprises a single phase of training, with students entering the profession directly after graduation. New teachers face challenges that they do not experience during training. Therefore, it is crucial that they receive support before and during this transition period. To identify the forms of support that meet the needs of teachers entering the profession, we investigated this issue through semi-structured interviews and a complex code configuration. The results showed that various sources of support ease teachers’ entry into the profession. Central aspects include exchanging teaching experiences and receiving reassurance related to their teaching practice. It is therefore conducive to the careers of new teachers if the school culture promotes looking for and accepting help, asking questions, and the exchange of teaching material.