Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
150
result(s) for
"M. De Serio"
Sort by:
Performance of thin-RPC detectors for high rate applications with eco-friendly gas mixtures
by
Vercellin, E.
,
Liberti, B.
,
Polini, A.
in
Astronomy
,
Astrophysics and Cosmology
,
Carbon dioxide
2024
In the last few years, an intense R &D activity on particle detectors for future HEP applications has been carried on with the aim of developing new techniques as well as studying the performance of already existing detectors when operated in a high rate environment. As for Resistive Plate Chamber detectors, the main challenges to face are the improvement of their detection capabilities and longevity at very high-rates, and the search for new eco-friendly gasmixtures free from greenhouse components. Results obtained in the framework of the RPC ECOGas@GIF++ Collaboration on a thin-Resistive Plate Chamber exposed at the CERN Gamma Irradiation Facility and operated with eco-friendly gas mixtures based on Tetrafluoropropene and Carbon dioxide will be discussed in this paper.
Journal Article
High-rate tests on resistive plate chambers operated with eco-friendly gas mixtures
by
Vercellin, E.
,
Liberti, B.
,
Polini, A.
in
Astronomy
,
Astrophysics and Cosmology
,
Carbon dioxide
2024
Results obtained by the RPC ECOgas@GIF++ Collaboration, using Resistive Plate Chambers operated with new, eco-friendly gas mixtures, based on tetrafluoropropene and carbon dioxide, are shown and discussed in this paper. Tests aimed to assess the performance of this kind of detectors in high-irradiation conditions, analogous to the ones foreseen for the coming years at the Large Hadron Collider experiments, were performed, and demonstrate a performance basically similar to the one obtained with the gas mixtures currently in use, based on tetrafluoroethane, which is being progressively phased out for its possible contribution to the greenhouse effect. Long term aging tests are also being carried out, with the goal to demonstrate the possibility of using these eco-friendly gas mixtures during the whole High Luminosity phase of the Large Hadron Collider.
Journal Article
Observation of νμ → ντ oscillations in the CNGS beam with the OPERA experiment
2015
The OPERA long-baseline neutrino experiment was exposed to the CNGS νμ beam from 2008 to 2012, collecting 19505 interactions in the target. The evidence for oscillated ντ appearance, based on the observation of three ντ candidate events, has been previously reported. A fourth candidate event has been recently found in an extended data sample, corresponding to about 89% of the final statistics. The absence of a signal from νμ → ντ oscillations is currently excluded at 4.2σ. The status of the analysis is described in detail with special emphasis on the procedures applied for the selection of signal candidate events and the assessment of efficiencies and background. The fourth ντ candidate event is presented and the significance of the observation is discussed.
Conference Proceeding
SHiP: a new facility to search for heavy neutrinos and study ντ properties
2016
SHiP (Search for Hidden Particles) is a newly designed fixed target facility, proposed at the CERN SPS accelerator, with the aim of complementing searches for New Physics at LHC by searching for light long-lived exotic particles with masses below a few GeV/c2. The sensitivity to Heavy Neutrinos will allow for the first time probing a region of the parameter space where Baryogenesis and active neutrino masses and oscillation could also be explained. A dedicated detector, based on OPERA-like bricks, will provide the first observation of the tau anti-neutrino. Moreover, ντ and ν̄τ cross-sections will be measured with a statistics 1000 times larger than currently available data and will allow extracting the F4 and F5 structure functions, never measured so far. Charm physics studies will be performed with significantly improved accuracy with respect to past experiments.
Journal Article
Search for sterile neutrinos in muon neutrino disappearance mode at FNAL
2017
The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the
muon-neutrino disappearance
measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid–Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the
ν
μ
disappearance and the
ν
e
appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of
ν
μ
disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.
Journal Article
Test of lepton universality in beauty-quark decays
by
Belavin, V.
,
Blusk, S.
,
Blake, T.
in
639/766/419/1131
,
Atomic
,
Classical and Continuum Physics
2022
The standard model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown that a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton–proton collision data collected with the LHCb detector at CERN’s Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the standard model, such as a new fundamental interaction between quarks and leptons.
The Large Hadron Collider beauty collaboration reports a test of lepton flavour universality in decays of bottom mesons into strange mesons and a charged lepton pair, finding evidence of a violation of this principle postulated in the standard model.
Journal Article
Sensitivity of the SHiP experiment to Heavy Neutral Leptons
by
Grachev, V.
,
Breton, D.
,
Gavrilov, G.
in
Antimatter
,
Beyond Standard Model
,
Classical and Quantum Gravitation
2019
A
bstract
Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate.
The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between
O
(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL’s benchmark models and provide a way to calculate the SHiP’s sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
Journal Article
Measurement of the TeV atmospheric muon charge ratio with the complete OPERA data set
2014
The OPERA detector, designed to search for
ν
μ
→
ν
τ
oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected charge-separated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio
R
μ
≡
N
μ
+
/
N
μ
-
was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowed minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA,
R
μ
is well described by a parametric model including only pion and kaon contributions to the muon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to
200
TeV/nucleon primary energy.
Journal Article
The SHiP experiment at the proposed CERN SPS Beam Dump Facility
2022
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV protons, the experiment aims at profiting from the 4×1019 protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2 up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
Journal Article