Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
9,305 result(s) for "Ma, Da"
Sort by:
Hybrid nodal-chain semimetal with emergent flat band in MgCaN2
The distinct over-tiltings of band crossings in topological semimetals generate the type-I and type-II classification of Dirac/Weyl and nodal-line fermions, accompanied by exotic electronic and magnetic transport properties. In this work, we propose a concept of hybrid nodal-chain semimetal (NCSM), which is identified by linked type-I and type-II nodal rings (NRs) and hosts inevitable flat band. Using first-principles calculations and structure search technique, a new ternary nitride MgCaN2 is proposed as the first candidate to realize a novel 3D hybrid NCSM state. Remarkably, flat band is emergent along specific direction as a characteristic signature of such a hybrid nodal-chain, thus offering a platform to explore the interplay between topological states and flat bands. By analyzing the mirror Z2 topological invariant and developing a low-energy effective k⋅p model, we unveil the physical origin of the hybrid nodal-chain structure with multiple-mirror protected mechanism. Moreover, when the linked NRs are projected onto the (010) and (001) surfaces, considerable drumhead-like topological surface states can be illustrated with unique connection patterns. These results expand our understanding of NCSMs from significant band tilting effects and provide a new candidate on realizing hybrid nodal-chain fermion for further theoretical and experimental investigations.
Catalogue of flat-band stoichiometric materials
Topological electronic flattened bands near or at the Fermi level are a promising route towards unconventional superconductivity and correlated insulating states. However, the related experiments are mostly limited to engineered materials, such as moiré systems 1 – 3 . Here we present a catalogue of the naturally occuring three-dimensional stoichiometric materials with flat bands around the Fermi level. We consider 55,206 materials from the Inorganic Crystal Structure Database catalogued using the Topological Quantum Chemistry website 4 , 5 , which provides their structural parameters, space group, band structure, density of states and topological characterization. We combine several direct signatures and properties of band flatness with a high-throughput analysis of all crystal structures. In particular, we identify materials hosting line-graph or bipartite sublattices—in either two or three dimensions—that probably lead to flat bands. From this trove of information, we create the Materials Flatband Database website, a powerful search engine for future theoretical and experimental studies. We use the database to extract a curated list of 2,379 high-quality flat-band materials, from which we identify 345 promising candidates that potentially host flat bands with charge centres that are not strongly localized on the atomic sites. We showcase five representative materials and provide a theoretical explanation for the origin of their flat bands close to the Fermi energy using the S -matrix method introduced in a parallel work 6 . A catalogue of the naturally occurring three-dimensional stoichiometric materials with flat bands around the Fermi level provides a powerful search engine for future theoretical and experimental studies.
A long duration of intraoperative hypotension is associated with postoperative delirium occurrence following thoracic and orthopedic surgery in elderly
Postoperative delirium (POD) is a common surgical complication associated with increased morbidity and mortality in elderly. Although the underlying mechanisms remain elusive, perioperative risk factors were reported to be closely related to its development. This study was designed to investigate the association between the duration of intraoperative hypotension and POD incidence following thoracic and orthopedic surgery in elderly. The perioperative data from 605 elderly undergoing thoracic and orthopedic surgery from January 2021 to July 2022 were analyzed. The primary exposure was a cumulative duration of mean arterial pressure (MAP) ≤ 65 mmHg. The primary end-point was the POD incidence assessed with confusion assessment method (CAM) or CAM-ICU for three days after surgery. Restricted cubic spline (RCS) was conducted to examine the continuous relationship between the duration of intraoperative hypotension and POD incidence adjusted with patients' demographics and surgery related factors. Then the duration of intraoperative hypotension was categorized into three groups: no hypotension, short (< 5 mins) or long duration (≥ 5 mins) of hypotension for further analysis. The incidence of POD was 14.7% (89 cases out of 605) within three days after surgery. The duration of hypotension presented a non-linear and “inverted L-shaped” effect on POD development. Compared to no hypotension, long duration (adjusted OR 3.93; 95% CI: 2.07–7.45; P < 0.001) rather than short duration of MAP ≤65 mmHg (adjusted OR 1.18; 95% CI: 0.56–2.50; P = 0.671) was closely related to the POD incidence. Intraoperative hypotension (MAP ≤65 mmHg) for ≥5 mins was associated with an increased incidence of POD after thoracic and orthopedic surgery in elderly. •There is equivocal evidence on the association between intraoperative hypotension and POD.•A cumulative duration of intraoperative hypotension (MAP ≤65 mmHg) for ≥ 5 mins increased the occurrence of POD.•Timely correcting intraoperative hypotension may decrease the occurrence of POD in elderly.
Flat-band and diverse quasi-fermions in Pb10(PO4)6O4
Employing a combination of first-principles calculations and low-energy effective models, we present a comprehensive investigation on the electronic structure of Pb10(PO4)6O4, which exhibits remarkable quasi-one-dimensional topological flat-band around the Fermi level. These flat bands predominantly originate from the px/py orbitals of the oxygen molecules chain at the fully-occupied 4e Wyckoff positions and thus can be well-captured by a minimal four-band tight-binding model. Furthermore, the abundant crystal symmetry inherent in Pb10(PO4)6O4 provides an ideal platform for the emergence of various quasi-fermions characterized by different dispersion, degeneracy, and dimensionality. These include a 0D four-fold degenerate Dirac fermion exhibiting quadratic dispersion, a 1D quadratic/linear nodal-line fermion along symmetric k-paths, a 1D hourglass nodal-line (HNL) fermion associated with the Dirac fermion, and a 2D symmetry-enforced nodal surface located on the kz = π plane. Moreover, when considering the weak ferromagnetic order, Pb10(PO4)6O4 transforms into a rare semi-half-metal, which is characterized by the presence of Dirac fermion and HNL fermion at the Fermi level for a single spin channel exhibiting 100% spin polarization. Our findings reveal the rarely coexistence of flat bands, diverse topological semimetal states and ferromagnetism in Pb10(PO4)6O4, which may provide valuable insights for further exploring the intriguing interplay between superconductivity and exotic electronic states.
Chaotic dynamics of string around charged black brane with hyperscaling violation
A bstract By fast Lyapunov indicator (FLI), we study the chaotic dynamics of closed string around charged black brane with hyperscaling violation (HV). The Hawking temperature, Lifshitz dynamical exponent and HV exponent together affect the chaotic dynamics of this system. The temperature plays the role of driving the closed string to escape to infinity. There is a threshold value z ∗ = 2, below which the string is captured by the black brane no matter where the string is placed at the beginning. However, when z > 2, the string escapes to infinity if it is placed near the black brane at the beginning, but if the initial position of string is far away from the black brane, it oscillates around the black brane till eternity, which is a quasi-periodic motion. HV exponent plays the role of driving the string falling into the black brane. With the increase of HV exponent θ , the falling velocity becomes faster. We find that when we heat the system with large HV exponent, the chaotic system does not essentially changes. It indicates that the HV exponent plays a very important role in determining the state of the chaotic system. Also we study the effect from the winding number of the string. The study indicates that the chaotic dynamics of the string is insensitive to the winding number.
Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing
Vascular deficits are a fundamental contributing factor of diabetes-associated diseases. Although previous studies have demonstrated that the pro-angiogenic phase of wound healing is blunted in diabetes, a comprehensive understanding of the mechanisms that regulate skin revascularization and capillary stabilization in diabetic wounds is lacking. Using a mouse model of diabetic wound healing, we performed microCT analysis of the 3-dimensional architecture of the capillary bed. As compared to wild type, vessel surface area, branch junction number, total vessel length, and total branch number were significantly decreased in wounds of diabetic mice as compared to WT mice. Diabetic mouse wounds also had significantly increased capillary permeability and decreased pericyte coverage of capillaries. Diabetic wounds exhibited significant perturbations in the expression of factors that affect vascular regrowth, maturation and stability. Specifically, the expression of VEGF-A, Sprouty2, PEDF, LRP6, Thrombospondin 1, CXCL10, CXCR3, PDGFR-β, HB-EGF, EGFR, TGF-β1, Semaphorin3a, Neuropilin 1, angiopoietin 2, NG2, and RGS5 were down-regulated in diabetic wounds. Together, these studies provide novel information about the complexity of the perturbation of angiogenesis in diabetic wounds. Targeting factors responsible for wound resolution and vascular pruning, as well those that affect pericyte recruitment, maturation, and stability may have the potential to improve diabetic skin wound healing.
A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients
Introduction Anti-malarial drug artesunate can suppress inflammation and prevent cartilage and bone destruction in collagen-induced arthritis model in rats—suggesting it may be a potent drug for rheumatoid arthritis (RA) therapy. We aimed to investigate its effect on the invasive property of fibroblast-like synoviocytes (FLS) from patients with RA. Methods Synovial tissues were obtained by closed needle biopsy from active RA patients, and FLS were isolated and cultured in vitro. RA-FLS were treated with artesunate at various concentrations, while methotrexate or hydroxychloroquine was employed as comparator drugs. Cell viability, proliferation, cell cycle, apoptosis, migration, invasion, and pseudopodium formation of RA-FLS were assessed by CCK-8 assays, EdU staining, Annexin V-FITC/PI staining, transwell assays, or F-actin staining, respectively. Further, relative changes of expressed proteases were analyzed by Proteome profiler human protease array and verified by quantitative real-time PCR (qPCR), Western blot, and ELISA. The expression of signaling molecules of MAPK, NF-κB, AP-1, and PI3K/Akt pathways were measured by qPCR and Western blot. PDK-1 knockdown by specific inhibitor AR-12 or siRNA transfection was used to verify the pharmacological mechanism of artesunate on RA-FLS. Results Artesunate significantly inhibited the migration and invasion of RA-FLS in a dose-dependent manner with or without TNF-α stimulation. The effect was mediated through artesunate inhibition of MMP-2 and MMP-9 production, and pre-treatment with exogenous MMP-9 reversed the inhibitory effect of artesunate on RA-FLS invasion. Artesunate had a stronger inhibitory effect on migration and invasion of RA-FLS as well as greater anti-inflammatory effect than those of hydroxychloroquine. Similar inhibitory effect was detected between artesunate and methotrexate, and synergy was observed when combined. Mechanistically, artesunate significantly inhibited PDK-1 expression as well as Akt and RSK2 phosphorylation—in a similar manner to PDK-1-specific inhibitor AR-12 or PDK-1 knockdown by siRNA transfection. This inhibition results in suppression of RA-FLS migration and invasion as well as decreased MMP-2 and MMP-9 expression. Conclusions Our study demonstrates artesunate is capable of inhibiting migration and invasion of RA-FLS through suppression of PDK1-induced activation of Akt and RSK2 phosphorylation—suggesting that artesunate may be a potential disease-modifying anti-rheumatic drug for RA.
Chaotic dynamics of string around the conformal black hole
In this paper, we make a systematical and in-depth study on the chaotic dynamics of the string around the conformal black hole. Depending on the characteristic parameter of the conformal black hole and the initial position of the string, there are three kinds of dynamical behaviors: ordered, chaotic and being captured, chaotic but not being captured. A particular interesting observation is that there is a sharp transition in chaotic dynamics when the black hole horizon disappears, which is independent of the initial position of the string. It provides a possible way to probe the horizon structure of the massive body. We also examine the generalized MSS (Maldacena, Shenker and Stanford) inequality, which is proposed in holographic dual field theory, and find that the generalized MSS inequality holds even in the asymptotically flat black hole background. Especially, as the initial position of the string approaches the black hole horizon, the Lyapunov exponent also approaches the upper bound of the generalized MSS inequality.