Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,536 result(s) for "Ma, Li-Jun"
Sort by:
FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense ( Foc ) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc . In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2 , and two Dicer coding genes FoDCL1 and FoDCL2 , all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87 , with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.
Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4
• Fusaric acid (FSA) is a phytotoxin produced by several Fusarium species and has been associated with plant disease development, although its role is still not well understood. • Mutation of key genes in the FSA biosynthetic gene (FUB) cluster in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) reduced the FSA production, and resulted in decreased disease symptoms and reduced fungal biomass in the host banana plants. • When pretreated with FSA, both banana leaves and pseudostems exhibited increased sensitivity to Foc TR4 invasion. Banana embryogenic cell suspensions (ECSs) treated with FSA exhibited a lower rate of O₂ uptake, loss of mitochondrial membrane potential, increased reactive oxygen species (ROS) accumulation, and greater nuclear condensation and cell death. Consistently, transcriptomic analysis of FSA-treated ECSs showed that FSA may induce plant cell death through regulating the expression of genes involved in mitochondrial functions. • The results herein demonstrated that the FSA from Foc TR4 functions as a positive virulence factor and acts at the early stage of the disease development before the appearance of the fungal hyphae in the infected tissues.
Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1
Background Circular RNAs (circRNAs) play a critical regulatory role in cancer progression. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) metastasis remain mostly unknown. Methods Has_circ_0003998 (circ0003998) was identified by RNAs sequencing in HCC patients with /without portal vein tumor thrombus (PVTT) metastasis. The expression level of circ0003998 was further detected by in situ hybridization on tissues microarray (ISH-TMA) and qRT-PCR in 25 HCC patients with PVTT metastasis. Moreover, the 25 HCC patients with PVTT metastasis and 50 HCC patients without PVTT metastasis were recruited together to analyze the correlation between circ0003998 expression and HCC clinical characteristics. Transwell, migration and CCK8 assays, as well as nude mice model of lung or liver metastasis were used to evaluate the role of circ0003998 in epithelial to mesenchymal transition (EMT) in HCC. The regulatory mechanisms of circ0003998 in miR-143-3p and PCBP1 were determined by dual-luciferase reporter assay, nuclear-cytoplasmic fractionation, fluorescent in situ hybridization, RNA pull- down, microRNA sequence, western blot and RNA immunoprecipitation. Results Compared with adjacent normal liver tissues (ANL), circ0003998 expression was significantly upregulated in PVTT tissues and HCC tissues, and its expression correlates with the aggressive characteristics of HCC patients. Further assays suggested that circ0003998 promoted EMT of HCC both in vitro and in vivo. Mechanistically, our data indicated that circ0003998 may act as a ceRNA (competing endogenous RNA) of microRNA-143-3p to relieve the repressive effect on EMT-related stimulator, FOSL2; meanwhile, circ0003998 could bind with PCBP1-poly(rC) binding protein 1 (PCBP1) to increase the expression level of EMT-related genes, CD44v6. Conclusion Circ0003998 promotes EMT of HCC by circ0003998/miR-143-3p/FOSL2 axis and circ0003998 /PCBP1/CD44v6 axis.
Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum
Head blight caused by Fusarium graminearum threatens world-wide wheat production, resulting in both yield loss and mycotoxin contamination. We reconstructed the global F. graminearum gene regulatory network (GRN) from a large collection of transcriptomic data using Bayesian network inference, a machine-learning algorithm. This GRN reveals connectivity between key regulators and their target genes. Focusing on key regulators, this network contains eight distinct but interwoven modules. Enriched for unique functions, such as cell cycle, DNA replication, transcription, translation and stress responses, each module exhibits distinct expression profiles. Evolutionarily, the F. graminearum genome can be divided into core regions shared with closely related species and variable regions harboring genes that are unique to F. graminearum and perform species-specific functions. Interestingly, the inferred top regulators regulate genes that are significantly enriched from the same genomic regions (P < 0.05), revealing a compartmentalized network structure that may reflect network rewiring related to specific adaptation of this plant pathogen. This first-ever reconstructed filamentous fungal GRN primes our understanding of pathogenicity at the systems biology level and provides enticing prospects for novel disease control strategies involving the targeting of master regulators in pathogens. The program can be used to construct GRNs of other plant pathogens.
Shuffling effector genes through mini-chromosomes
About the Authors: Li-Jun Ma * E-mail: lijun@biochem.umass.edu Affiliation: Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America ORCID logo http://orcid.org/0000-0002-2733-3708 Jin-Rong Xu Affiliation: Department of Pathology, Purdue University, West Lafayette, Indiana, United States of America ORCID logo http://orcid.org/0000-0001-5999-5004 Citation: Ma L-J, Xu J-R (2019) Shuffling effector genes through mini-chromosomes. PWL2 has also been reported to be a member of an AVR gene family that can be recognized by host plant resistance (R) genes in a gene-for-gene manner [7]. Follow-up functional studies of genes unique to MoT may lead to the identification of virulence factors associated with wheat infection. Because of the dynamic nature of mini-chromosomes and the mobility of effector genes present on these chromosomes, monitoring the genome evolution, particularly the mini-chromosomes, in the MoT strains at the global level is important to better understand the adaptation of this important pathogen and to develop more effective disease management strategies.
Transposons and accessory genes drive adaptation in a clonally evolving fungal pathogen
Genomes of clonally reproducing fungal pathogens are often compartmentalized into conserved core and lineage-specific accessory regions (ARs), enriched in transposable elements (TEs). ARs and TEs are thought to promote pathogen adaptation, but direct experimental evidence is sparse. Using an evolve and re-sequence approach, we found that serial passaging of the cross-kingdom fungal pathogen Fusarium oxysporum through tomato plants or axenic media rapidly increased fitness under the selection condition. TE insertions were the predominant type of mutations in the evolved lines, with a single non-autonomous hAT-type TE accounting for 63% of total events detected. TEs are inserted preferentially at sites of histone H3 lysine 27 trimethylation, a hallmark of ARs. Recurrent evolutionary trajectories during plate adaptation led to increased proliferation concomitant with reduced virulence. Unexpectedly, adaptive mutations in accessory genes strongly impacted core functions such as growth, development, quorum sensing, or virulence. Thus, TEs and ARs drive rapid adaptation in this important fungal pathogen. Using passage and re-sequence experiments, this study revealed that the clonally reproducing fungal pathogen Fusarium oxysporum can rapidly adapt to new environments using transposons and accessory genomic regions as the main evolutionary drivers.
Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ~30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ~16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogeneous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.
Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics
Ustilaginoidea virens (Cooke) Takah is an ascomycetous fungus that causes rice false smut, a devastating emerging disease worldwide. Here we report a 39.4 Mb draft genome sequence of U. virens that encodes 8,426 predicted genes. The genome has ~25% repetitive sequences that have been affected by repeat-induced point mutations. Evolutionarily, U. virens is close to the entomopathogenic Metarhizium spp., suggesting potential host jumping across kingdoms. U. virens possesses reduced gene inventories for polysaccharide degradation, nutrient uptake and secondary metabolism, which may result from adaptations to the specific floret infection and biotrophic lifestyles. Consistent with their potential roles in pathogenicity, genes for secreted proteins and secondary metabolism and the pathogen–host interaction database genes are highly enriched in the transcriptome during early infection. We further show that 18 candidate effectors can suppress plant hypersensitive responses. Together, our analyses offer new insights into molecular mechanisms of evolution, biotrophy and pathogenesis of U. virens . Rice false smut, caused by the pathogenic ascomycete fungus Ustilaginoidea virens (Cooke) Takah, has a significant economic impact on crop production. Here, Zhang et al . report the draft genome sequence of U. virens and provide insight into the evolution of genes involved in pathogenicity and adaptation to a biotrophic and floret-infecting lifestyle.
Host-specific adaptation in Fusarium oxysporum correlates with distinct accessory chromosome content in human and plant pathogenic strains
Fusarium oxysporum is a cross-kingdom fungal pathogen that infects both plants and animals. In addition to causing many devastating wilt diseases, this group of organisms was recently recognized by the World Health Organization as a high-priority threat to human health. Climate change has increased the risk of Fusarium infections, as Fusarium strains are highly adaptable to changing environments. Deciphering fungal adaptation mechanisms is crucial to developing appropriate control strategies. We performed a comparative analysis of Fusarium strains using an animal (mouse) and plant (tomato) host and in vitro conditions that mimic abiotic stress. We also performed comparative genomics analyses to highlight the genetic differences between human and plant pathogens and correlate their phenotypic and genotypic variations. We uncovered important functional hubs shared by plant and human pathogens, such as chromatin modification, transcriptional regulation, and signal transduction, which could be used to identify novel antifungal targets.