Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
92,895
result(s) for
"Ma, Li-Li"
Sort by:
حيوية شينجيانغ
by
Xinping, Li مؤلف
,
Ma, Yong, 1956- مترجم
,
Xinping, Li. Feng qing Xinjiang
in
النقل الصين تركستان الشرقية
,
تركستان الشرقية (الصين) حضارة
2015
يتناول كتاب (حيوية شينجيانغ) الإنجازات والنتائج المتميزة التي حققتها شينجيانغ منذ عهد الإصلاح والانفتاح تحت قيادة اللجنة المركزية للحزب الشيوعي الصيني وفي ظل الجهود المشتركة بين كافة القوميات بشينجيانغ معتمدا على التغيير والتنمية التي حظيت بها شينجيانغ في العصر الحديث، وذلك من خلال مجموعة من الجوانب مثل تطور النقل والمواصلات بشينجيانغ والتحضر والزراعة والصناعة والقضايا الاجتماعية والجوانب المعيشية وغيرها، كما استعرض الكتاب الحياة السعيدة التي تمتعت بها كافة قوميات شينجيانغ في ظل العصر الحديث. وهكذا يكون الكتاب قد قدم للقارئ شينجيانغ الحيوية التي تتمتع بالنشاط والعزيمة.
CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
2017
Background
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization.
Results
We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability.
Conclusion
The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Journal Article
Multi-stable mechanical metamaterials by elastic buckling instability
2019
The mechanical responses of two novel kinds of two-dimensional (2D) mechanical metamaterials containing opposite or parallel snapping curved (U-shaped) segments with elastic snap-through instability mechanism are systematically investigated. Under uniaxial loading, the metamaterials undergo a large deformation caused by stiffness mismatch between snapping (buckling instabilities) and supporting (relative stiffer/thicker) components, exhibiting very small transverse deformation after every snapping. Based on the multi-stable mechanism, phase transformation/shape-reconfiguration and zero Poisson’s ratio are achieved up to large morphological change. Nonlinear mechanical responses including self-recovering snapping and multi-stability enabling snapping behaviors can be generated by tuning the geometric parameters (the relative thickness of the snapping and supporting segments as well as the amplitude of the snapping curved segments). Then topology analysis is carried out to develop the 2D structures to a series of 3D hierarchical configurations from which can be chosen for various engineering conditions with enhanced snapping mechanism. Specifically, multi-stable/shape-reconfigurable tubes and cylinders are designed using the 3D configurations. Besides, one of the 3D metamaterials is developed for functional applications as shock absorber and damper, i.e., the process from fully stretched state to fully compacted state is used to absorb energy and reduce incoming pressure with small stiffness and strength; then the fully compacted metamaterials are used to carry load and attenuate vibration with relative bigger stiffness and strength. This work gives advance to the design, analysis and manufacture of functionally reconfigurable mechanical metamaterials.
Journal Article
Value of contrast-enhanced ultrasonography of the carotid artery for evaluating disease activity in Takayasu arteritis
2019
Aims
To assess the value of contrast-enhanced ultrasonography (CEUS) for monitoring disease activity of Takayasu arteritis (TA).
Methods
TA patients were recruited in a Chinese TA clinical center from January 2016 to September 2017. The physician global assessment was used as the referential standard for disease activity. Clinical data, acute phase reactants, and CEUS scans were simultaneously recorded at baseline and after a 3-month therapy.
Results
A total of 84 TA patients were enrolled, and 47 (55.95%) cases were active at baseline. Macaroni sign and entire artery involvement were characteristic findings of CEUS in TA. The average vascular full thickness of the carotid artery in active TA patients was significantly higher than that in inactive patients (2.36 ± 0.86 vs. 1.79 ± 0.49 mm;
p
= 0.001). Severe neovascularization (grade 2) was observed in 29 active cases (61.70%) and in 9 inactive cases (24.32%) (
p
= 0.001). Receiver operating characteristic analysis showed that the combination of CEUS parameters (cutoff of thickness was 1.75 mm or neovascularization grade 2) and erythrocyte sedimentation rate (ESR) (cutoff of 20 mm/H) could help differentiate between active and inactive TA patients with a sensitivity and specificity of 81.1% and 81.5%, respectively. Youdon’s index was 0.626. Furthermore, our study found that patients with decreased ESR and C-reactive protein (CRP) still had a progression of vascular wall inflammation at 3 months of follow-up.
Conclusions
The evaluation of vascular inflammation by CEUS is more sensitive than acute phase reactants. Neovascularization can still be observed in the vascular lesion sites of those who have reached clinical remission after treatment. Thus, CEUS can be used as an alternative method to assess disease activity for TA patients.
Journal Article
Tu Youyou's discovery : finding a cure for malaria
by
Daemicke, Songju Ma, author
,
Lin (Lin Li), illustrator
in
Tu, Youyou, 1930- Juvenile literature.
,
Tu, Youyou, 1930-
,
Pharmacologists China Biography Juvenile literature.
2021
\"Tu Youyou had been interested in science and medicine since she was a child, so when malaria started infecting people all over the world in 1969, she went to work finding a treatment. Trained as a medical researcher in college and healed by traditional medicine techniques when she was young, Tu Youyou started experimenting with natural Chinese remedies. The treatment she discovered through years of research and experimentation is still used all over the world today\"-- Provided by publisher
New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis
2019
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1′s functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1′s functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Journal Article
Water cycle management : a new paradigm of wastewater reuse and safety control
This book focuses on environmental engineering, and on wastewater treatment and reuse in particular, which is a vital aspect for countries and regions suffering from water shortages. It introduces a new water cycle management concept for designing water systems that mimic the hydrological cycle, where reclaimed water is produced, stored/regulated, supplied and used in a semi-natural manner so that its self-purification capacity and system efficiency can be maximized. To ensure safe water throughout the cycle, emphasis is placed on the control of ecological and pathogenic risks using a series of quality indices associated with bioassays and molecular biological analyses, as well as risk assessments focusing on protecting the environment and human health. Together with theoretical and technological discussions, a real case of a district water system for maximizing water circulation and reuse by means of a sophisticated water cycle is presented. This book introduces readers to essential new concepts and practices and illustrates the future perspectives offered by a new paradigm for design and safety control in the context of wastewater reuse systems.
Bioinformatics analysis of potential key ferroptosis-related genes involved in tubulointerstitial injury in patients with diabetic nephropathy
2023
Diabetic nephropathy (DN) is the primary complication of diabetes mellitus. Ferroptosis is a form of cell death that plays an important role in DN tubulointerstitial injury, but the specific molecular mechanism remains unclear. Here, we downloaded the DN tubulointerstitial datasets GSE104954 and GSE30529 from the Gene Expression Omnibus database. We examined the differentially expressed genes (DEGs) between DN patients and healthy controls, and 36 ferroptosis-related DEGs were selected. Pathway-enrichment analyses showed that many of these genes are involved in metabolic pathways, phosphoinositide 3-kinase/Akt signaling, and hypoxia-inducible factor-1 signaling. Ten of the 36 ferroptosis-related DEGs (CD44, PTEN, CDKN1A, DPP4, DUSP1, CYBB, DDIT3, ALOX5, VEGFA, and NCF2) were identified as key genes. Expression patterns for six of these (CD44, PTEN, DDIT3, ALOX5, VEGFA, and NCF2) were validated in the GSE30529 dataset. Nephroseq data indicated that the mRNA expression levels of CD44, PTEN, ALOX5, and NCF2 were negatively correlated with the glomerular filtration rate (GFR), while VEGFA and DDIT3 mRNA expression levels were positively correlated with GFR. Immune infiltration analysis demonstrated altered immunity in DN patients. Real-time quantitative PCR (qPCR) analysis showed that ALOX5, PTEN, and NCF2 mRNA levels were significantly upregulated in high-glucose-treated human proximal tubular (HK-2) cells, while DDIT3 and VEGFA mRNA levels were significantly downregulated. Immunohistochemistry analysis of human renal biopsies showed positive staining for ALOX5 and NCF2 protein in DN samples but not the controls. These key genes may be involved in the molecular mechanisms underlying ferroptosis in patients with DN, potentially through specific metabolic pathways and immune/inflammatory mechanisms.
Journal Article