Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Maag, Nino"
Sort by:
Life history responses of meerkats to seasonal changes in extreme environments
Species in extreme habitats increasingly face changes in seasonal climate, but the demographic mechanisms through which these changes affect population persistence remain unknown. We investigated how changes in seasonal rainfall and temperature influence vital rates and viability of an arid environment specialist, the Kalahari meerkat, through effects on body mass. We show that climate change–induced reduction in adult mass in the prebreeding season would decrease fecundity during the breeding season and increase extinction risk, particularly at low population densities. In contrast, a warmer nonbreeding season resulting in increased mass and survival would buffer negative effects of reduced rainfall during the breeding season, ensuring persistence. Because most ecosystems undergo seasonal climate variations, a full understanding of species vulnerability to global change relies on linking seasonal trait and population dynamics.
Cost of dispersal in a social mammal: body mass loss and increased stress
Dispersal is a key process influencing the dynamics of socially and spatially structured populations. Dispersal success is determined by the state of individuals at emigration and the costs incurred after emigration. However, quantification of such costs is often difficult, due to logistical constraints of following wide-ranging individuals. We investigated the effects of dispersal on individual body mass and stress hormone levels in a cooperative breeder, the meerkat ( Suricata suricatta ). We measured body mass and faecal glucocorticoid metabolite (fGCM) concentrations from 95 dispersing females in 65 coalitions through the entire dispersal process. Females that successfully settled lost body mass, while females that did not settle but returned to their natal group after a short period of time did not. Furthermore, dispersing females had higher fGCM levels than resident females, and this was especially pronounced during the later stages of dispersal. By adding information on the transient stage of dispersal and by comparing dispersers that successfully settled to dispersers that returned to their natal group, we expand on previous studies focusing on the earlier stages of dispersal. We propose that body mass and stress hormone levels are good indicators to investigate dispersal costs, as these traits often play an important role in mediating the effects of the environment on other life-history events and individual fitness.
Reproductive success of the wood warbler Phylloscopus sibilatrix varies across Europe
Differences in population trends across a species' breeding range are ultimately linked to variation in demographic rates. In small songbirds, demographic rates related to fecundity typically have strong effects on population trends. Populations of a forest songbird, the wood warbler Phylloscopus sibilatrix, have been declining in many but not all regions of the European breeding range. We investigated if clutch size, hatching rate, nest survival and number of fledglings vary across Europe, and if nest survival is related to differences in the regionally dominant nest predator class (birds versus mammals). From 2009 to 2020, we monitored 1896 nests and used cameras at a subsample of 645 nests in six study regions: the United Kingdom (mid‐Wales, Dartmoor, the New Forest), Germany (Hessen), Switzerland (Jura mountains) and Poland (Białowieża National Park). Number of fledglings was lowest in the New Forest (1.43 ± CI 0.23), intermediate in Jura (2.41 ± 0.31) and Białowieża (2.26 ± 0.24) and highest in mid‐Wales (3.02 ± 0.48) and Dartmoor (2.92 ± 0.32). The reason for low reproductive success in the New Forest, Jura and Białowieża was low nest survival, and large clutch sizes in Białowieża did not compensate for high nest losses. High reproductive success in mid‐Wales and Dartmoor was due to high nest survival and large clutch sizes. Overall predation rates were similar everywhere despite variation between the regions in the dominant nest predator class. Unsuccessful nests in mid‐Wales were mainly predated by birds; in Dartmoor, the New Forest, Hessen and Jura similarly by birds and mammals; and in Białowieża exclusively by mammals. Regional reproductive success does not match the population trends recently reported for the wood warbler in the six study regions (i.e. high reproduction ≠ positive trend). Annual survival may be a decisive factor, but it is difficult to quantify for a nomadic species such as the wood warbler that rarely returns to the same breeding locations.
Accounting for predator species identity reveals variable relationships between nest predation rate and habitat in a temperate forest songbird
Nest predation is the primary cause of nest failure in most ground‐nesting bird species. Investigations of relationships between nest predation rate and habitat usually pool different predator species. However, such relationships likely depend on the specific predator involved, partly because habitat requirements vary among predator species. Pooling may therefore impair our ability to identify conservation‐relevant relationships between nest predation rate and habitat. We investigated predator‐specific nest predation rates in the forest‐dependent, ground‐nesting wood warbler Phylloscopus sibilatrix in relation to forest area and forest edge complexity at two spatial scales and to the composition of the adjacent habitat matrix. We used camera traps at 559 nests to identify nest predators in five study regions across Europe. When analyzing predation data pooled across predator species, nest predation rate was positively related to forest area at the local scale (1000 m around nest), and higher where proportion of grassland in the adjacent habitat matrix was high but arable land low. Analyses by each predator species revealed variable relationships between nest predation rates and habitat. At the local scale, nest predation by most predators was higher where forest area was large. At the landscape scale (10,000 m around nest), nest predation by buzzards Buteo buteo was high where forest area was small. Predation by pine martens Martes martes was high where edge complexity at the landscape scale was high. Predation by badgers Meles meles was high where the matrix had much grassland but little arable land. Our results suggest that relationships between nest predation rates and habitat can depend on the predator species involved and may differ from analyses disregarding predator identity. Predator‐specific nest predation rates, and their relationships to habitat at different spatial scales, should be considered when assessing the impact of habitat change on avian nesting success. Studies about relationships between nest predation rate and habitat usually pool different predator species. However, such relationships likely depend on the specific predator involved, partly because habitat requirements vary among predator species. We show that accounting for predator species identity reveals variable relationships between nest predation rate and habitat in wood warblers.
Density-dependent dispersal strategies in a cooperative breeder
Dispersal is a key ecological process that influences the dynamics of spatially and socially structured populations and consists of three stages—emigration, transience, and settlement—and each stage is influenced by different social, individual, and environmental factors. Despite our appreciation of the complexity of the process, we lack a firm empirical understanding of the mechanisms underlying the different stages. Here, using data from 65 GPS-collared dispersing female coalitions of the cooperatively breeding meerkat (Suricata suricatta), we present a comprehensive analysis of the effects of population density, mate availability, dispersing coalition size, and individual factors on each of the three stages of dispersal in a wild population. We expected a positive effect of density on dispersal due to increased kin competition at high densities. We further anticipated positive effects of mate availability, coalition size, and body condition on dispersal success. We observed increasing daily emigration and settlement probabilities at high population densities. In addition, we found that emigration and settlement probabilities also increased at low densities and were lowest at medium densities. Daily emigration and settlement probabilities increased with increasing female coalition size and in the presence of unrelated males. Furthermore, the time individuals spent in the transient stage increased with population density, whereas coalition size and presence of unrelated males decreased dispersal distance. The observed nonlinear relationship between dispersal and population density is likely due to limited benefits of cooperation at low population densities and increased kin competition at high densities. Our study provides empirical validation for the theoretical predictions that population density is an important factor driving the evolution of delayed dispersal and philopatry in cooperative breeders.
Socially informed dispersal in a territorial cooperative breeder
1. Dispersal is a key process governing the dynamics of socially and spatially structured populations and involves three distinct stages: emigration, transience and settlement. At each stage, individuals have to make movement decisions, which are influenced by social, environmental and individual factors. Yet, a comprehensive understanding of the drivers that influence such decisions is still lacking, particularly for the transient stage during which free-living individuals are inherently difficult to follow. 2. Social circumstances such as the likelihood of encountering conspecifics can be expected to strongly affects decision-making during dispersal, particularly in territorial species where encounters with resident conspecifics are antagonistic. Here, we analysed the movement trajectories of 47 dispersing coalitions of Kalahari meerkats Suricata suricatta through a landscape occupied by constantly monitored resident groups, while simultaneously taking into account environmental and individual characteristics. 3. We used GPS locations collected on resident groups to create a georeferenced social landscape representing the likelihood of encountering resident groups. We used a step-selection function to infer the effect of social, environmental and individual covariates on habitat selection during dispersal. Finally, we created a temporal mismatch between the social landscape and the dispersal event of interest to identify the temporal scale at which dispersers perceive the social landscape. 4. Including information about the social landscape considerably improved our representation of the dispersal trajectory compared to analyses that only accounted for environmental variables. The latter were only marginally selected or avoided by dispersers. Before leaving their natal territory, dispersers selected areas frequently used by their natal group. In contrast, after leaving their natal territory, they selectively used areas where they were less likely to encounter unrelated groups. This pattern was particularly marked in larger dispersing coalitions and when unrelated males were part of the dispersing coalition. 5. Our results suggest that, in socially and spatially structured species, dispersers gather and process social information during dispersal, and that reducing risk of aggression from unrelated resident groups outweighs benefits derived from conspecific attraction. Finally, our work underlines the intimate link between the social structure of a population and dispersal, which affect each other reciprocally.
Cost of dispersal in a social mammal
Dispersal is a key process influencing the dynamics of socially and spatially structured populations. Dispersal success is determined by the state of individuals at emigration and the costs incurred after emigration. However, quantification of such costs is often difficult, due to logistical constraints of following wide-ranging individuals. We investigated the effects of dispersal on individual body mass and stress hormone levels in a cooperative breeder, the meerkat (Suricata suricatta). We measured body mass and faecal glucocorticoid metabolite (fGCM) concentrations from 95 dispersing females in 65 coalitions through the entire dispersal process. Females that successfully settled lost body mass, while females that did not settle but returned to their natal group after a short period of time did not. Furthermore, dispersing females had higher fGCM levels than resident females, and this was especially pronounced during the later stages of dispersal. By adding information on the transient stage of dispersal and by comparing dispersers that successfully settled to dispersers that returned to their natal group, we expand on previous studies focusing on the earlier stages of dispersal. We propose that body mass and stress hormone levels are good indicators to investigate dispersal costs, as these traits often play an important role in mediating the effects of the environment on other life-history events and individual fitness.
Sink or swim: a test of tadpole behavioral responses to predator cues and potential alarm pheromones from skin secretions
Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.