Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Maagensen, Henrik"
Sort by:
Bone Turnover Markers in Patients With Nonalcoholic Fatty Liver Disease and/or Type 2 Diabetes During Oral Glucose and Isoglycemic Intravenous Glucose
Abstract Context Nonalcoholic fatty liver disease (NAFLD) is associated with type 2 diabetes (T2D) and vice versa, and both conditions are associated with an increased risk of fractures and altered bone turnover. Although patients with NAFLD typically suffer from decreased bone mineral density (BMD), T2D is associated with normal to high BMD. The pathophysiology is uncertain but may involve the gut–bone axis. Objective We investigated the influence of the gut on glucose-induced changes in plasma bone turnover markers in healthy controls and patients with T2D and/or biopsy-verified NAFLD. Design Cross-sectional cohort study. Patients Patients with NAFLD with normal glucose tolerance, patients with NAFLD and T2D, patients with T2D without liver disease, and healthy controls. Interventions Four-hour 50-g oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI). Main Outcome Measures Collagen type 1 C-telopeptide (CTX), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and parathyroid hormone. Results Plasma glucose levels achieved during OGTTs were successfully matched on corresponding IIGI days. Patients with NAFLD and T2D exhibited similar CTX suppression during the two glucose challenges (P = 0.46) and pronounced suppression of P1NP during IIGI compared with OGTT. Conversely, remaining groups showed greater (P < 0.05) CTX suppression during OGTT and similar suppression of bone formation markers during IIGI and OGTT. Conclusions OGTT-induced CTX suppression seems to be impaired in patients with NAFLD and T2D, but preserved in patients with either NAFLD or T2D, suggesting that coexistence of T2D and NAFLD may affect gut–bone axis. Bone turnover markers were measured during oral and intravenous glucose administration, respectively. Bone resorption was suppressed by oral glucose compared with intravenous glucose.
The Gut-Bone Axis in Diabetes
Purpose of Review To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. Recent Findings The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. Summary GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.