Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Maat, Christina A."
Sort by:
Dysregulation of brain and choroid plexus cell types in severe COVID-19
2021
Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms
1
–
3
. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease
4
–
6
. Synaptic signalling of upper-layer excitatory neurons—which are evolutionarily expanded in humans
7
and linked to cognitive function
8
—is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.
Single-nucleus transcriptomes of frontal cortex and choroid plexus samples from patients with COVID-19 reveal pathological cell states that are similar to those associated with human neurodegenerative diseases and chronic brain disorders.
Journal Article
The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy
2021
Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)—including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn—accumulate in Lewy bodies (LBs) in different regions of the Parkinson’s disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.
Journal Article
Multiomic profiling of the acute stress response in the mouse hippocampus
2022
The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an
interactive app
to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress.
Acute stress can help individuals to respond to challenging events, although chronic stress leads to maladaptive changes. Here, the authors present a multi omic analysis profiling acute stress-induced changes in the mouse hippocampus, providing a resource for the scientific community.
Journal Article
A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk
2022
The human brain vasculature is of great medical importance: its dysfunction causes disability and death
1
, and the specialized structure it forms—the blood–brain barrier—impedes the treatment of nearly all brain disorders
2
,
3
. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer’s disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer’s disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer’s disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer’s disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.
A method called vessel isolation and nuclei extraction for sequencing (VINE-seq) produces a molecular map of vascular and perivascular cell types in the human brain and reveals their contributions to Alzheimer’s disease risk.
Journal Article
A human brain vascular atlas reveals diverse cell mediators of Alzheimer's disease risk
by
Wyss-Coray, Tony
,
Agam, Maayan
,
Gate, David
in
Alzheimer's disease
,
Blood flow
,
Blood-brain barrier
2021
The human brain vasculature is of vast medical importance: its dysfunction causes disability and death, and the specialized structure it forms--the blood-brain barrier--impedes treatment of nearly all brain disorders. Yet, no molecular atlas of the human brain vasculature exists. Here, we develop Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to profile the major human brain vascular and perivascular cell types through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 17 control and Alzheimer's disease (AD) patients. We identify brain region-enriched pathways and genes divergent between humans and mice, including those involved in disease. We describe the principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum; but discover that many zonation and cell-type markers differ between species. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In AD, we observe a selective vulnerability of ECM-maintaining pericytes and gene expression patterns implicating dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 AD GWAS genes are expressed in the human brain vasculature, confirmed in situ. Vascular GWAS genes map to endothelial protein transport, adaptive immune, and ECM pathways. Many are microglia-specific in mice, suggesting an evolutionary transfer of AD risk to human vascular cells. Our work unravels the molecular basis of the human brain vasculature, informing our understanding of overall brain health, disease, and therapy. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://twc-stanford.shinyapps.io/human_bbb
Molecular roadmap of the healthy stress response in the mouse hippocampus
by
Pierre-Luc Germain
,
Das Gupta, Rebecca R
,
Waag, Rebecca
in
Cellular stress response
,
Hippocampus
,
Homeostasis
2021
Summary The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, little is known about the nature and dynamics of the underlying molecular cascades. We used a brief forced swim exposure to trigger a strong stress response in mice, which transiently increases anxiety, but does not lead to lasting maladaptive behavioral changes. Using multiomic profiling we characterize the stress-induced molecular events in the hippocampus over time, across molecular scales, and down to the level of cell types and single cells. Our results unveil the complexity and specificity of the healthy stress response, with widespread changes in protein phosphorylation and gene transcription, but tightly regulated protein translation. All observed molecular events resolve efficiently within 4 hours after initiation of stress. The data are accessible through an interactive web portal, creating an extensive molecular resource that will help understand how stress impacts brain function in health and disease. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://bohaceklab.hest.ethz.ch/StressomeExplorer * Abbreviations S Supplementary AS acute stress HC hippocampus TF transcription factor min minutes IP immunopurification
Broad transcriptional dysregulation of brain and choroid plexus cell types with COVID-19
by
Wyss-Coray, Tony
,
Schulz-Schaeffer, Walter J
,
Gate, David
in
Astrocytes
,
Choroid plexus
,
Cognitive ability
2020
Abstract Though SARS-CoV-2 primarily targets the respiratory system, it is increasingly appreciated that patients may suffer neurological symptoms of varied severity1–3. However, an unbiased understanding of the molecular processes across brain cell types that could contribute to these symptoms in COVID-19 patients is still missing. Here, we profile 47,678 droplet-based single-nucleus transcriptomes from the frontal cortex and choroid plexus across 10 non-viral, 4 COVID-19, and 1 influenza patient. We complement transcriptomic data with immunohistochemical staining for the presence of SARS-CoV-2. We find that all major cortex parenchymal and choroid plexus cell types are affected transcriptionally with COVID-19. This arises, in part, from SARS-CoV-2 infection of the cortical brain vasculature, meninges, and choroid plexus, stimulating increased inflammatory signaling into the brain. In parallel, peripheral immune cells infiltrate the brain, microglia activate programs mediating the phagocytosis of live neurons, and astrocytes dysregulate genes involved in neurotransmitter homeostasis. Among neurons, layer 2/3 excitatory neurons—evolutionarily expanded in humans4—show a specific downregulation of genes encoding major SNARE and synaptic vesicle components, predicting compromised synaptic transmission. These perturbations are not observed in terminal influenza. Many COVID-19 gene expression changes are shared with those in chronic brain disorders and reside in genetic variants associated with cognitive function, schizophrenia, and depression. Our findings and public dataset provide a molecular framework and new opportunities to understand COVID-19 related neurological disease. Competing Interest Statement The authors have declared no competing interest.
Subcellular orchestration of alpha-synuclein variants in Parkinson's disease brains as revealed by 3D multicolor STED microscopy
by
Geurts, Jeroen Jg
,
Dziadek, Sebastian
,
Niedieker, Daniel
in
Antibodies
,
C-Terminus
,
Lewy bodies
2019
Post-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson's disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation. Footnotes * Information regarding the characterization of the antibodies utilized in the present study is included in the revised version of the manuscript (Supplementary Table 5; Supplementary Figures 9 and 10).
Comparison of Two Music Training Approaches on Music and Speech Perception in Cochlear Implant Users
2018
In normal-hearing (NH) adults, long-term music training may benefit music and speech perception, even when listening to spectro-temporally degraded signals as experienced by cochlear implant (CI) users. In this study, we compared two different music training approaches in CI users and their effects on speech and music perception, as it remains unclear which approach to music training might be best. The approaches differed in terms of music exercises and social interaction. For the pitch/timbre group, melodic contour identification (MCI) training was performed using computer software. For the music therapy group, training involved face-to-face group exercises (rhythm perception, musical speech perception, music perception, singing, vocal emotion identification, and music improvisation). For the control group, training involved group nonmusic activities (e.g., writing, cooking, and woodworking). Training consisted of weekly 2-hr sessions over a 6-week period. Speech intelligibility in quiet and noise, vocal emotion identification, MCI, and quality of life (QoL) were measured before and after training. The different training approaches appeared to offer different benefits for music and speech perception. Training effects were observed within-domain (better MCI performance for the pitch/timbre group), with little cross-domain transfer of music training (emotion identification significantly improved for the music therapy group). While training had no significant effect on QoL, the music therapy group reported better perceptual skills across training sessions. These results suggest that more extensive and intensive training approaches that combine pitch training with the social aspects of music therapy may further benefit CI users.
Journal Article