Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Maboob, Shahid"
Sort by:
Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of Aphanomyces invadans, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model
by
Sarkar, Purabi
,
Velayutham, Manikandan
,
Maboob, Shahid
in
Amino acids
,
ant-inflammatory
,
anti-cancer
2022
In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.
Journal Article
Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of IAphanomyces invadans/I, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model
by
Sarkar, Purabi
,
Velayutham, Manikandan
,
Maboob, Shahid
in
Amino acids
,
Analysis
,
Anti-inflammatory drugs
2022
In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.
Journal Article
Accumulation of heavy metals in the fish, Oreochromis niloticus and Poecilia latipinna and their concentration in water and sediment of dam lake of Wadi Namar, Saudi Arabia
by
Maboob, Shahid
,
Al-Balawi, Hmoud F Al-Kahem
,
Al-Misned, Fahad
in
Accumulation
,
Animals
,
Cadmium
2015
The present study reports the accumulation of heavy metals like Cu, Hg, Cd, Pb and Cr in different tissues viz. liver, kidney, gills and muscles of Oreochromisniloticus and Poecilia latipinna from two sites in dam lake of Wadi Namar. Water and sediment samples were also collected from two sites for heavy metal analysis. Metal concentration in water and sediment samples of both the sites were observed in the following order: Cu>Cr>Pb>Cd>Hg; however, their concentration was found to be more at site 2 as compared to site 1. The order of metal accumulation in different tissues of O. niloticus and P. latipinna was in the following order: Cu>Cr>Pb>Cd>Hg at both the sites, while liver accumulated maximum amounts of metals followed by kidney, gills and muscles. The results showed the site 2 was more polluted by metals than Site 1 and O. niloticus accumulated greater amount of metals than P. latipinna.
Journal Article
Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus
by
Maboob, Shahid
,
Al-Kahem Al-Balawi, Hmoud F
,
Al-Misned, Fahad
in
Acetates
,
Acetic acid
,
Biochemistry
2016
Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.
Journal Article