Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Macanović, Armin"
Sort by:
Revisiting Traditional Medicinal Plants: Integrating Multiomics, In Vitro Culture, and Elicitation to Unlock Bioactive Potential
Traditional medicinal plants are valued for their therapeutic potential, yet the full spectrum of their bioactive compounds often remains underexplored. Recent advances in multiomics technologies, including metabolomics, proteomics, and transcriptomics, combined with in vitro culture systems and elicitor-based strategies, have revolutionized our ability to characterize and enhance the production of valuable secondary metabolites. This review synthesizes current findings on the integration of these approaches to help us understand phytochemical pathways optimising bioactive compound yields. We explore how metabolomic profiling links chemical diversity with antioxidant and antimicrobial activities, how proteomic insights reveal regulatory mechanisms activated during elicitation, and how in vitro systems enable controlled manipulation of metabolic outputs. Both biotic and abiotic elicitors, such as methyl jasmonate and salicylic acid, are discussed as key triggers of phytochemical defense pathways. Further, we examine the potential of multiomics-informed metabolic engineering and synthetic biology to scale production and discover novel compounds. By aligning traditional ethnobotanical knowledge with modern biotechnology, this integrative framework offers a powerful avenue to unlock the pharmacological potential of medicinal plants for sustainable and innovative therapeutic development.
Biflavonoid Profiling of Juniperus Species: The Influence of Plant Part and Growing Location
Biflavonoids are an important group of flavonoids found in Juniperus species, yet their distribution and accumulation patterns remain insufficiently explored. In this study, we applied a method for the simultaneous quantification of seven biflavonoids to analyze different plant parts of J. communis, J. communis subsp. nana, and J. oxycedrus. In order to determinate the influence of growing location, we also analyzed J. communis samples collected from different locations. Four biflavonoids—cupressuflavone, amentoflavone, bilobetin, and hinokiflavone—were detected. In both analyzed J. communis varieties, amentoflavone was the predominant biflavonoid in cones and needles, while in J. oxycedrus, cupressuflavone was the most abundant in cones, with amentoflavone dominating in needles. Overall, biflavonoid content was significantly higher in needles than in cones, with total biflavonoid levels in needles exceeding 5 mg/g dw, highlighting the tissue-specific nature of biflavonoid biosynthesis within Juniperus species. Additionally, our results suggest that in J. communis, biflavonoid accumulation is significantly influenced by growing location.
Dimensions of invasiveness
Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species’ distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders—abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species’ introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions—for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.