Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Macchi, Arturo"
Sort by:
Pressurized Chemical Looping Flue Gas Polishing via Novel Integrated Heat Exchanger Reactor
by
Ge Hongtian
,
Macchi, Arturo
,
Haelssig Jan
in
Carbon
,
chemical looping combustion
,
Equilibrium
2025
Pressurized chemical looping combustion (PCLC) provides the benefit of simplifying the carbon capture process by generating a flue gas stream with high CO2 concentration. However, flue gas polishing is required to remove the residual impurities for pipeline transport. The intensified heat exchanger reactor (IHXR) is a promising method for flue gas polishing while maximizing useful heat recovery that incorporates alternating catalytic packed beds with interstage cooling via printed circuit heat exchangers (PCHE). This work offers a design process for an IHXR capable of polishing a flue gas stream from a 100 MWth natural gas-fired PCLC unit while recovering 1.6 MW of useful heat in the form of saturated steam at 180 °C. Simulation work performed in Aspen HYSYS was used to determine the polished flue gas outlet species concentrations as well as the required number and size of the packed bed sections. The PCHEs for interstage cooling were sized via a thermal circuit approach. The final IHXR consists of six packed beds at 0.06 m in length and five PCHEs at 0.265 m in length, combining to a total IHXR length of 1.685 m. The height and width of the IHXR is shared between the packed beds and PCHEs at 0.91 m and 0.45 m, respectively. The resulting IHXR is capable of recovering heat at a rate of approximately 2.3 MW/m3.
Journal Article
Application of the Calcium Looping Process for Thermochemical Storage of Variable Energy
by
Macchi, Arturo
,
Atkinson, Kelly
,
Hughes, Robin
in
Atmospheric pressure
,
Calcium carbonate
,
calcium looping
2023
The calcium looping (CaL) process, which exploits the reversible calcination of calcium carbonate, has been proposed as a solution to the challenges facing deployment of concentrated solar power (CSP). As an extension of the work undertaken to date, this project proposes a novel configuration of the CSP-CaL process which may offer advantages over other proposed configurations, including a reduction in process equipment requirements, elimination of pressure differentials between vessels, and a reduction in compression duty during the energy discharge period. The results obtained through process simulation indicate that the proposed process can achieve round-trip efficiencies in the range of 32–46% and energy storage densities in the range of 0.3–1.0 GJ/m3. These parameters are strongly dependent on the residual conversion of the CaO sorbent as well as the efficiency of the power cycles used to remove heat on the carbonator side of the process.
Journal Article
Oxygen Carrier Circulation Rate for Novel Cold Flow Chemical Looping Reactors
2024
To achieve net-zero emissions by the year 2050, carbon capture, utilization, and storage technologies must be implemented to decarbonize sectors with hard-to-abate emissions. Pressurized chemical looping (PCL) with a novel reactor design called a plug flow with internal recirculation (PFIR) fluidized bed is proposed as an attractive carbon capture technology to decarbonize small- and medium-scale emitters. The objective of this work is to examine the solid circulation rate between redox reactors in a cold flow chemical looping facility using an energy balance approach. The effects of static bed height, weir opening height, purge configuration, and gas flow rate on solid circulation rate were investigated. It was determined that parameters that greatly affected the total gas momentum, such as the fluidization ratio or number of purge rows, tended to also have a large effect on solid circulation rate. Parameters that had a small effect on total gas momentum, such as bed height, did not have a measurable effect on solid circulation rate. It was noted that parameters that posed a restriction to solids flow, such as a vertical purge jet or the weir itself, decreased the solid circulation rate compared to similar tests without restrictions.
Journal Article
Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation
by
Hughes, Robin W.
,
Macchi, Arturo
,
Haelssig, Jan B.
in
Backup software
,
Carbon dioxide
,
catalytic deoxygenation
2024
The concentration of residual O2 in oxy-fuel combustion flue gas needs to be reduced before CO2 transportation, utilization, or storage. An original application of the printed circuit heat exchanger (PCHE) for catalytic combustion with natural gas (catalytic deoxygenation) is described for reducing the residual O2 concentration. The PCHE design features multiple adiabatic packed beds with interstage cooling and fuel injection, allowing precise control over the reaction extent and temperature within each reaction stage through the manipulation of fuel and utility flow rates. This work describes the design of a PCHE for methane–oxygen catalytic combustion where the catalyst loading is minimized while reducing the O2 concentration from 3 vol% to 100 ppmv, considering a maximum adiabatic temperature rise of 50 °C per stage. Each PCHE design differs by the number of reaction stages and its individual bed lengths. As part of the design process, a one-dimensional transient reduced-order reactor model (1D ROM) was developed and compared to temperature and species concentration axial profiles from 3D CFD simulations. The final design consists of five reaction stages and four heat exchanger sections, providing a PCHE length of 1.09 m at a processing rate of 12.3 kg/s flue gas per m3 PCHE.
Journal Article
Dry Fuel Jet Half-Angle Measurements and Correlation for an Entrained Flow Gasifier
2018
Reduced order models (ROMs) are increasingly applied to entrained flow gasification development due to reduced computational requirements relative to computational fluid dynamics (CFD) models. However, they require greater a posteriori knowledge of the reactor physics. A significant parameter influencing ROM outputs is the jet half-angle of the solid fuel and oxidant mixture in the gasifier. Thus, it is important to understand the geometry of the jet in the gasifier, and how it is dependent on operating parameters, such as solid and carrier gas flow rates. In this work, an existing model for jet half-angles, which considers the ratio of surrounding gas density to jet core density, is extended to a dry solids jet with impinging gas. The model is fitted to experimental jet half-angles. The jet half-angle of a non-reactive flow was measured using laser-sheet imaging for solid fluxes in the range of 460–880 kg/m2·s and carrier gas fluxes in the range of 43–90 kg/m2·s at the transport line outlet. Jet half-angles ranged from 5.6° to 11.3°, increasing with lower solid/gas loading ratios. CFD simulations of two reactive conditions, with solid and gas fluxes similar to experiments, were used to test the applicability of the proposed jet half-angle model.
Journal Article
Gas-Liquid Flow and Interphase Mass Transfer in LL Microreactors
by
Doyle, Brendon J.
,
Macchi, Arturo
,
Haelssig, Jan B.
in
Bubbles
,
Carbon dioxide
,
Chemical synthesis
2020
This work investigates the impact of fluid (CO2(g), water) flow rates, channel geometry, and the presence of a surfactant (ethanol) on the resulting gas–liquid flow regime (bubble, slug, annular), pressure drop, and interphase mass transfer coefficient (kla) in the FlowPlateTM LL (liquid-liquid) microreactor, which was originally designed for immiscible liquid systems. The flow regime map generated by the complex mixer geometry is compared to that obtained in straight channels of a similar characteristic length, while the pressure drop is fitted to the separated flows model of Lockhart–Martinelli, and the kla in the bubble flow regime is fitted to a power dissipation model based on isotropic turbulent bubble breakup. The LL-Rhombus configuration yielded higher kla values for an equivalent pressure drop when compared to the LL-Triangle geometry. The Lockhart–Martinelli model provided good pressure drop predictions for the entire range of experimental data (AARE < 8.1%), but the fitting parameters are dependent on the mixing unit geometry and fluid phase properties. The correlation of kla with the energy dissipation rate provided a good fit for the experimental data in the bubble flow regime (AARE < 13.9%). The presented experimental data and correlations further characterize LL microreactors, which are part of a toolbox for fine chemical synthesis involving immiscible fluids for applications involving reactive gas–liquid flows.
Journal Article
The Effects of Thermal Treatment and Steam Addition on Integrated CuO/CaO Chemical Looping Combustion for CO2 Capture
by
Macchi, Arturo
,
Liew, Sip
,
Rahman, Ryad
in
calcium looping combustion
,
calcium oxide
,
carbon capture
2016
The combination of Chemical Looping Combustion (CLC) with Calcium Looping (CaL) using integrated pellets is an alternative CO2 capture process to the current amine-based sorbent processes, but the pellets lose sorption capacity over time. In this paper, the deactivation behavior of CaO, CuO and CuO/CaO integrated pellets used for multiple (16–20) cycles in a thermogravimetric analyzer was studied. The impact of thermal treatment and the presence of steam on the deactivation were also investigated. Nitrogen physisorption and scanning electron microscopy/energy-dispersive X-ray analysis were used to characterize the pellets. The analysis revealed significant migration of the copper to the surface of the composite pellets, which likely suppressed carbonation capacity by reducing the accessibility of the CaO. While thermal pre-treatment and steam addition enhanced the performance of the base CaO pellets, the former led to cracks in the pellets. In contrast, thermal pretreatment of the CuO/CaO composite pellets resulted in worse CLC and CaL performance.
Journal Article
Direct capture of carbon dioxide from air via lime-based sorbents
2020
Direct air capture (DAC) is a developing technology for removing carbon dioxide (CO2) from the atmosphere or from low-CO2-containing sources. In principle, it could be used to remove sufficient CO2 from the atmosphere to compensate for hard-to-decarbonize sectors, such as aviation, or even for polishing gas streams containing relatively low CO2 concentrations. In this paper, the performance of lime-based sorbents for CO2 capture from air in a fixed bed was investigated. The effects of sorbent type, particle diameter, air flow rate, and relative humidity on the breakthrough time, breakthrough shape, and global reaction rate over a series of capture and regeneration cycles were examined. The greatest reaction rates and conversions were obtained when the sorbents were pre-hydrated and inlet air was humidified to 55% relative humidity. Humidifying the air alone leads to axial carbonation gradients since there is competition between CO2 and water with the available CaO. Negligible conversion, over the duration of the experiment, is obtained in a dry system without pre-hydration and humid air. A shrinking-core gas–solid reaction model was fitted to the breakthrough curves in order to estimate the surface reaction and effective diffusion constants. Although the surface reaction constants of the two sorbents were similar, the pelletized limestone had a greater effective diffusivity due to its greater porosity. At mild calcination conditions with air at 850 °C, the pelletized particles maintained their activity over nine carbonation–calcination cycles with a conversion drop of only 9% points. However, calcination under oxy-fuel conditions (CO2 at 920 °C) reduced the pellet carbonation conversion from 81 to 59% and pore surface area from 12.01 to 3.20 m2/g after only 4 cycles. This research clearly shows that DAC using lime-based sorbents is technically feasible, and that regeneration schemes compatible with technologies like calcium looping (CaL) are applicable for the air capture option. Finally, this study demonstrates that DAC using lime-based materials can be in the future a strategy to address emissions from transportation and distributed CO2 sources and to mitigate climate change.
Journal Article
Interactions of vanadium-rich slags with crucible materials during viscosity measurements
by
Macchi, Arturo
,
Ilyushechkin, Alexander Y.
,
Anthony, Edward J.
in
Aluminum oxide
,
Blends
,
Characterization and Evaluation of Materials
2013
Slag chemistry is important for the assessment of flow behaviour of slags produced during gasification of coal and coal–petroleum coke blends. Slags containing vanadium species react readily with the crucible and spindle materials used for viscosity measurements. Interaction of vanadium-rich slags with various materials has been investigated in order to obtain a better understanding of the impact of containment materials on the resulting slag chemistry and viscosity. The bulk and phase compositions of two petroleum coke slags in Al
2
O
3
, Mo, Pt and Ni crucibles produced under different laboratory conditions were analysed, and kinetics of slag composition changes at 1400 °C were determined. Mechanisms of the slag interactions with crucibles are described. They involve exchanging of crucible and slag constituents, formation of interfaces with distinct compositions, and continuously changing phase equilibria in the system. For slag processed in Ni and Pt crucibles, reduction of Fe and Ni from oxide to metallic form occurs and is followed by dissolution into the crucible materials. Viscosity of slags with Mo, Ni and Al
2
O
3
crucibles are determined in the temperature range 1200–1500 °C. Resulting changes in the bulk composition of the processed slag has an impact on the slag viscosity. At given temperatures, viscosities of the slags produced in different crucibles are different. The impact of crucible materials and their applicability in viscosity measurements of high vanadium-containing slags are also discussed in order to define the optimal conditions.
Journal Article
Flow Chemistry, Volume 1 - Fundamentals
by
Hessel Volker
,
Darvas Ferenc
,
Dormán György
in
Chemistry & Chemical Engineering
,
Physical Chemistry
2014
This book fills the gap in graduate education by covering chemistry and reaction principles along with current practice, including examples of relevant commercial reaction, separation, automation, and analytical equipment. The Editors of Flow Chemistry are commended for having taken the initiative to bring together experts from the field to provide a comprehensive treatment of fundamental and practical considerations underlying flow chemistry. It promises to become a useful study text and as well as reference for the graduate students and practitioners of flow chemistry. Broader theoretical insight in driving a chemical reaction automatically opens the window towards new technologies particularly to flow chemistry. This emerging concept promotes the transformation of present day's organic processes into a more rapid continuous set of synthesis operations, more compatible with the envisioned sustainable world.