Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
325 result(s) for "Macedo, Marcia"
Sort by:
Abrupt increases in Amazonian tree mortality due to drought–fire interactions
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW·m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Decoupling of deforestation and soy production in the southern Amazon during the late 2000s
From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996–2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion.
Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome
Land use, land use change, and forestry accounted for two-thirds of Brazil's greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil's forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil's definition of forest cover in 2000 (≥0.5 ha with ≥10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003-2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of Maranhão, Tocantins, Piauí, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr−1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010-2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-to-cropland transitions offset 5%-7% of the avoided emissions from reduced Amazon deforestation rates during 2011-2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry.
The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas
Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances—processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region’s carbon in 2016 but were responsible for just 10% (−130 MtC) of the net change (−1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (−434 MtC and −423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.
Limits of Brazil’s Forest Code as a means to end illegal deforestation
The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil’s 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR. Using geospatial analyses and stakeholder interviews, we quantify the impact of CAR on deforestation and forest restoration, investigating how landowners adjust their behaviors over time. Our results indicate rapid adoption of CAR, with registered properties covering a total of 57 Mha by 2013. This suggests that the financial incentives to join CAR currently exceed the costs. Registered properties initially showed lower deforestation rates than unregistered ones, but these differences varied by property size and diminished over time. Moreover, only 6% of registered producers reported taking steps to restore illegally cleared areas on their properties. Our results suggest that, fromthe landowner’s perspective, full compliance with the Forest Code offers few economic benefits. Achieving zero illegal deforestation in this context would require the private sector to include full compliance as a market criterion, while state and federal governments develop SICAR as a de facto enforcement mechanism. These results are relevant to other tropical countries and underscore the importance of developing a policy mix that creates lasting incentives for sustainable land-use practices.
Climatic limit for agriculture in Brazil
Brazil’s leadership in soybean and maize production depends on predictable rainfall in the Amazon-Cerrado agricultural frontier. Here we assess whether agricultural expansion and intensification in the region are approaching a climatic limit to rainfed production. We show that yields decline in years with unusually low rainfall or high aridity during the early stages of crop development—a pattern observed in rainfed and irrigated areas alike. Although agricultural expansion and intensification have increased over time, dry–hot weather during drought events has slowed their rate of growth. Recent regional warming and drying already have pushed 28% of current agricultural lands out of their optimum climate space. We project that 51% of the region’s agriculture will move out of that climate space by 2030 and 74% by 2060. Although agronomic adaptation strategies may relieve some of these impacts, maintaining native vegetation is a critical part of the solution for stabilizing the regional climate.Soybean and maize yields in the Amazon-Cerrado region of Brazil are dependent on water from rain. Warming and drying will make the climate less suitable for agricultural production; changes have already moved 28% of croplands out of their optimum climate space.
Deep Soil Water Reservoirs Modulate Land Use and Drought Effects on the Water Budget of Amazon Headwaters
The southeastern Amazon has been transformed by widespread land use and climate changes, altering the hydrologic cycle. In this seasonally dry tropical forest, the soil water reservoir plays a strong role in mediating the water balance by buffering forests during dry seasons and moderate droughts, as well as modulating runoff to streams. Few studies have examined the response of soil water reservoirs to large‐scale forest loss in headwater regions, much less how these changes may influence catchment water balances during droughts. This study compares the water balance of forested and cropland watersheds in the headwaters of the Xingu River basin (Mato Grosso, Brazil). We combined measurements of stream discharge and soil moisture (from 0.3 to 8 m depth) from the 2014–2018 water years, along with remotely sensed precipitation and evapotranspiration (ET) data, comparing normal precipitation years to an extreme drought year. Streams within agricultural catchments had four times higher discharge (29% of total precipitation) than in forested catchments (8%). During normal years, this difference was balanced by differences in ET. We found that groundwater outflow—water that bypasses a catchment without reaching the stream—is a significant water export term under both landcovers (19% in forest; 26% in croplands). However, during drought years, this outflow disappears in forested catchments and decreases in agricultural catchments, suggesting enhanced groundwater uptake by vegetation that diminishes contributions to rivers downstream. Multiyear droughts projected under future climate changes could threaten the soil water reservoir, leaving forests without a critical resource and downstream communities vulnerable to streamflow loss.
Net loss of biomass predicted for tropical biomes in a changing climate
Tropical ecosystems store over half of the world’s aboveground live carbon as biomass, and water availability plays a key role in its distribution. Although precipitation and temperature are shifting across the tropics, their effect on biomass and carbon storage remains uncertain. Here we use empirical relationships between climate and aboveground biomass content to show that the contraction of humid regions, and expansion of those with intense dry periods, results in substantial carbon loss from the neotropics. Under a low emission scenario (Representative Concentration Pathway 4.5) this could cause a net reduction of aboveground live carbon of ~14.4–23.9 PgC (6.8–12%) from 1950–2100. Under a high emissions scenario (Representative Concentration Pathway 8.5) net carbon losses could double across the tropics, to ~28.2–39.7 PgC (13.3–20.1%). The contraction of humid regions in South America accounts for ~40% of this change. Climate mitigation strategies could prevent half of the carbon losses and help maintain the natural tropical net carbon sink.Precipitation and temperature affect biomass and carbon storage in the tropics. This study shows that warming-driven contraction of humid regions and expansion of areas with dry periods could double carbon losses, with about one-third associated with decline of humid areas in South America.
Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing
Tropical deforestation changes the surface energy balance and water cycle, but how much change occurs strongly depends on the land uses that follow deforestation. Here, we quantify how recent (2000-2010) transitions among widespread land uses (i.e., forests, croplands, and pastures) altered the water and energy balance in the Xingu region of southeast Amazonia. Spatial-temporal analyses of multiple satellite data sets revealed that forest-to-crop and forest-to-pasture transitions decreased the net surface radiation (by 18% and 12%, respectively) and latent heat flux (32% and 24%), while increasing sensible heat flux (6% and 9%). Land use transitions during the 2000s reduced contemporaneous evapotranspiration (ET) in the Xingu region by 35 km3 and warmed the land surface temperature (LST) by 0.3 °C. Forest-to-pasture and forest-to-crop transitions accounted for most of the observed ET reduction (25.5 km3 and 7 km3, respectively) and LST increase (0.2 °C and 0.07 °C). Pasture-to-crop transitions reduced ET by an additional 2.5 km3 and increased LST by 0.03 °C. If land use had changed at a similar rate within the region's protected areas, ET would have decreased by another 4.7 km3 and the surface would have warmed an additional 0.5 °C. Forests thus play a key role in regulating regional climate in Amazonia, with protected areas able to attenuate regional climate change caused by land use changes. Our findings show how a major non-GHG forcing, in this case agricultural expansion, has significantly altered regional climate in southeastern Amazonia and how protected forests can mitigate such changes.
Current and future patterns of fire-induced forest degradation in Amazonia
Amazon droughts directly increase forest flammability by reducing forest understory air and fuel moisture. Droughts also increase forest flammability indirectly by decreasing soil moisture, triggering leaf shedding, branch loss, and tree mortality-all of which contribute to increased fuel loads. These direct and indirect effects can cause widespread forest fires that reduce forest carbon stocks in the Amazon, with potentially important consequences for the global carbon cycle. These processes are expected to become more widespread, common, and intense as global climate changes, yet the mechanisms linking droughts, wildfires, and associated changes in carbon stocks remain poorly understood. Here, we expanded the capabilities of a dynamic forest carbon model to better represent (1) drought effects on carbon and fuel dynamics and (2) understory fire behavior and severity. We used the refined model to quantify changes in Pan-Amazon live carbon stocks as a function of the maximum climatological water deficit (MCWD) and fire intensity, under both historical and future climate conditions. We found that the 2005 and 2010 droughts increased potential fire intensity by 226 kW m−1 and 494 kW m−1, respectively. These increases were due primarily to increased understory dryness (109 kW m−1 in 2005; 124 kW m−1 in 2010) and altered forest structure (117 kW m−1 in 2005; 370 kW m−1 in 2010) effects. Combined, these historic droughts drove total simulated reductions in live carbon stocks of 0.016 (2005) and 0.027 (2010) PgC across the Amazon Basin. Projected increases in future fire intensity increased simulated carbon losses by up to 90% per unit area burned, compared with modern climate. Increased air temperature was the primary driver of changes in simulated future fire intensity, while reduced precipitation was secondary, particularly in the eastern portion of the Basin. Our results show that fire-drought interactions strongly affect live carbon stocks and that future climate change, combined with the synergistic effects of drought on forest flammability, may strongly influence the stability of tropical forests in the future.