Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Maciewicz, Rose A."
Sort by:
Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype
Loss of epithelial barrier integrity is implicated in a number of human lung diseases. However, the molecular pathways underlying this process are poorly understood. In a phenotypic screen, we identified Axl kinase as a negative regulator of epithelial phenotype and function. Furthermore, suppression of Axl activity by a small molecule kinase inhibitor or downregulation of Axl expression by small interfering RNA led to: (1) the increase in epithelial surfactant protein expression; (2) a cell morphology transition from front-rear polarity to cuboidal shape; (3) the cytoskeletal re-organization resulting in decreased cell mobility; and (4) the acquisition of epithelial junctions. Loss of Axl activity reduced activation of the Axl canonical pathway members, Akt and extracellular signal-regulated kinase-1/2 and resulted in the loss of gene expression of a unique profile of epithelial-to-mesenchymal transition transcription factors including SNAI2 , HOXA5 , TBX2 or TBX3 . Finally, we observed that Axl was activated in hyperplasia of epithelial cells in idiopathic pulmonary fibrosis where epithelial barrier integrity was lost. These results suggest that the Axl kinase signaling pathway is associated with the loss integrity of alveolar epithelium in pathological remodeling of human lung diseases.
Searchlight: automated bulk RNA-seq exploration and visualisation using dynamically generated R scripts
Background Once bulk RNA-seq data has been processed, i.e. aligned and then expression and differential tables generated, there remains the essential process where the biology is explored, visualized and interpreted. Without the use of a visualisation and interpretation pipeline this step can be time consuming and laborious, and is often completed using R. Though commercial visualisation and interpretation pipelines are comprehensive, freely available pipelines are currently more limited. Results Here we demonstrate Searchlight, a freely available bulk RNA-seq visualisation and interpretation pipeline. Searchlight provides: a comprehensive statistical and visual analysis, focusing on the global, pathway and single gene levels; compatibility with most differential experimental designs irrespective of organism or experimental complexity, via three workflows; reports; and support for downstream user modification of plots via user-friendly R-scripts and a Shiny app. We show that Searchlight offers greater automation than current best tools (VIPER and BioJupies). We demonstrate in a timed re-analysis study, that alongside a standard bulk RNA-seq processing pipeline, Searchlight can be used to complete bulk RNA-seq projects up to the point of manuscript quality figures, in under 3 h. Conclusions Compared to a manual R based analysis or current best freely available pipelines (VIPER and BioJupies), Searchlight can reduce the time and effort needed to complete bulk RNA-seq projects to manuscript level. Searchlight is suitable for bioinformaticians, service providers and bench scientists. https://github.com/Searchlight2/Searchlight2 .
Development of methodology to support molecular endotype discovery from synovial fluid of individuals with knee osteoarthritis: The STEpUP OA consortium
To develop a protocol for largescale analysis of synovial fluid proteins, for the identification of biological networks associated with subtypes of osteoarthritis. Synovial Fluid To detect molecular Endotypes by Unbiased Proteomics in Osteoarthritis (STEpUP OA) is an international consortium utilising clinical data (capturing pain, radiographic severity and demographic features) and knee synovial fluid from 17 participating cohorts. 1746 samples from 1650 individuals comprising OA, joint injury, healthy and inflammatory arthritis controls, divided into discovery (n = 1045) and replication (n = 701) datasets, were analysed by SomaScan Discovery Plex V4.1 (>7000 SOMAmers/proteins). An optimised approach to standardisation was developed. Technical confounders and batch-effects were identified and adjusted for. Poorly performing SOMAmers and samples were excluded. Variance in the data was determined by principal component (PC) analysis. A synovial fluid standardised protocol was optimised that had good reliability (<20% co-efficient of variation for >80% of SOMAmers in pooled samples) and overall good correlation with immunoassay. 1720 samples and >6290 SOMAmers met inclusion criteria. 48% of data variance (PC1) was strongly correlated with individual SOMAmer signal intensities, particularly with low abundance proteins (median correlation coefficient 0.70), and was enriched for nuclear and non-secreted proteins. We concluded that this component was predominantly intracellular proteins, and could be adjusted for using an 'intracellular protein score' (IPS). PC2 (7% variance) was attributable to processing batch and was batch-corrected by ComBat. Lesser effects were attributed to other technical confounders. Data visualisation revealed clustering of injury and OA cases in overlapping but distinguishable areas of high-dimensional proteomic space. We have developed a robust method for analysing synovial fluid protein, creating a molecular and clinical dataset of unprecedented scale to explore potential patient subtypes and the molecular pathogenesis of OA. Such methodology underpins the development of new approaches to tackle this disease which remains a huge societal challenge.
Large‐scale plasma proteomics can reveal distinct endotypes in chronic obstructive pulmonary disease and severe asthma
Background Chronic airway diseases including chronic obstructive pulmonary disease (COPD) and asthma are heterogenous in nature and endotypes within are underpinned by complex biology. This study aimed to investigate the utility of proteomic profiling of plasma combined with bioinformatic mining, and to define molecular endotypes and expand our knowledge of the underlying biology in chronic respiratory diseases. Methods The plasma proteome was evaluated using an aptamer‐based affinity proteomics platform (SOMAscan®), representing 1238 proteins in 34 subjects with stable COPD and 51 subjects with stable but severe asthma. For each disease, we evaluated a range of clinical/demographic characteristics including bronchodilator reversibility, blood eosinophilia levels, and smoking history. We applied modified bioinformatic approaches used in the evaluation of RNA transcriptomics. Results Subjects with COPD and severe asthma were distinguished from each other by 365 different protein abundancies, with differential pathway networks and upstream modulators. Furthermore, molecular endotypes within each disease could be defined. The protein groups that defined these endotypes had both known and novel biology including groups significantly enriched in exosomal markers derived from immune/inflammatory cells. Finally, we observed associations to clinical characteristics that previously have been under‐explored. Conclusion This investigational study evaluating the plasma proteome in clinically‐phenotyped subjects with chronic airway diseases provides support that such a method can be used to define molecular endotypes and pathobiological mechanisms that underpins these endotypes. It provided new concepts about the complexity of molecular pathways that define these diseases. In the longer term, such information will help to refine treatment options for defined groups.
MEK inhibition drives anti-viral defence in RV but not RSV challenged human airway epithelial cells through AKT/p70S6K/4E-BP1 signalling
Background The airway epithelium is a major target tissue in respiratory infections, and its antiviral response is mainly orchestrated by the interferon regulatory factor-3 (IRF3), which subsequently induces type I (β) and III (λ) interferon (IFN) signalling. Dual specificity mitogen-activated protein kinase kinase (MEK) pathway contributes to epithelial defence, but its role in the regulation of IFN response in human primary airway epithelial cells (AECs) is not fully understood. Here, we studied the impact of a small-molecule inhibitor (MEKi) on the IFN response following challenge with two major respiratory viruses rhinovirus (RV2) and respiratory syncytial virus (RSVA2) and a TLR3 agonist, poly(I:C). Methods The impact of MEKi on viral load and IFN response was evaluated in primary AECs with or without a neutralising antibody against IFN-β. Quantification of viral load was determined by live virus assay and absolute quantification using qRT-PCR. Secretion of cytokines was determined by AlphaLISA/ELISA and expression of interferon-stimulated genes (ISGs) was examined by qRT-PCR and immunoblotting. A poly(I:C) model was also used to further understand the molecular mechanism by which MEK controls IFN response. AlphaLISA, siRNA-interference, immunoblotting, and confocal microscopy was used to investigate the effect of MEKi on IRF3 activation and signalling. The impact of MEKi on ERK and AKT signalling was evaluated by immunoblotting and AlphaLISA. Results Here, we report that pharmacological inhibition of MEK pathway augments IRF3-driven type I and III IFN response in primary human AECs. MEKi induced activation of PI3K-AKT pathway, which was associated with phosphorylation/inactivation of the translational repressor 4E-BP1 and activation of the protein synthesis regulator p70 S6 kinase, two critical translational effectors. Elevated IFN-β response due to MEKi was also attributed to decreased STAT3 activation, which consequently dampened expression of the transcriptional repressor of IFNB1 gene, PRDI-BF1. Augmented IFN response translated into inhibition of rhinovirus 2 replication in primary AECs but not respiratory syncytial virus A2. Conclusions Our findings unveil MEK as a key molecular mechanism by which rhinovirus dampens the epithelial cell’s antiviral response. Our study provides a better understanding of the role of signalling pathways in shaping the antiviral response and suggests the use of MEK inhibitors in anti-viral therapy against RV.
Beer and wine consumption and risk of knee or hip osteoarthritis: a case control study
Introduction The aim of this study was to investigate the association between alcoholic and non-alcoholic beverages and knee or hip osteoarthritis (OA). Methods We conducted a case–control study of Caucasian men and women aged 45 to 86 years of age from Nottingham, UK. Cases had clinically severe symptoms and radiographic knee or hip OA; controls had no symptoms and no radiographic knee or hip OA. Exposure information was sought using interview-based questionnaires and a semi-quantitative food frequency questionnaire to assess beverage consumption at ages 21 to 50 years. Odds ratios (ORs), adjusted ORs (aORs), 95% confidence intervals (CI) and P values were estimated using logistic regression models. Results A total of 1,001 knee OA, 993 hip OA and 933 control participants were included in the study. Increasing beer consumption was associated with an increasing risk of OA ( P for trend ≤0.001). Compared to those who did not consume beer, aORs for people who consumed 20 or more servings of beer were 1.93 (95% CI 1.26 to 2.94) and 2.15 (95% CI 1.45 to 3.19) for knee OA and hip OA, respectively. In contrast, increasing levels of wine consumption were associated with decreased likelihood of knee OA ( P for trend <0.001). Compared to those who did not consume wine, aOR for knee OA among those who consumed 4 to 6 glasses of wine per week and ≥7 glasses of wine per week was 0.55 (95% CI 0.34 to 0.87) and 0.48 (95% CI 0.29 to 0.80), respectively. No association was identified between non-alcoholic beverages and knee or hip OA. Conclusions Beer consumption appears to be a risk factor for knee and hip OA whereas consumption of wine has a negative association with knee OA. The mechanism behind these findings is speculative but warrants further study.
The genetic contribution to severe post-traumatic osteoarthritis
Objective to compare the combined role of genetic variants loci associated with risk of knee or hip osteoarthritis (OA) in post-traumatic (PT) and non-traumatic (NT) cases of clinically severe OA leading to total joint replacement. Methods A total of 1590 controls, 2168 total knee replacement (TKR) cases (33.2% PT) and 1567 total hip replacement (THR) cases (8.7% PT) from 2 UK cohorts were genotyped for 12 variants previously reported to be reproducibly associated with risk of knee or hip OA. A genetic risk score was generated and the association with PT and NT TKR and THR was assessed adjusting for covariates. Results For THR, each additional genetic risk variant conferred lower risk among PT cases (OR=1.07, 95% CI 0.96 to 1.19; p=0.24) than NT cases (OR 1.11, 95% CI 1.06 to 1.17; p=1.55×10−5). In contrast, for TKR, each risk variant conferred slightly higher risk among PT cases (OR 1.12, 95% CI 1.07 to 1.19; p=1.82×10−5) than among NT cases (OR 1.08, 95% CI 1.03 to 1.1; p=0.00063). Conclusions Based on the variants reported to date PT TKR cases have at least as high a genetic contribution as NT cases.
Lower Leptin/Adiponectin Ratio and Risk of Rapid Lung Function Decline in Chronic Obstructive Pulmonary Disease
The rate of annual change in FEV1 is highly variable among patients with chronic obstructive pulmonary disease (COPD). Reliable blood biomarkers are needed to predict prognosis. To explore plasma biomarkers associated with an annual change in FEV1 in patients with COPD. Plasma samples of 261 subjects, all Japanese, with COPD from the 5-year Hokkaido COPD cohort study were analyzed as a hypothesis-generating cohort, and the results were validated using data of 226 subjects with and 268 subjects without airflow limitation, mainly white, from the 4-year COPD Quantification by Computed Tomography, Biomarkers, and Quality of Life (CBQ) study conducted in Denmark. The plasma samples were measured using Human CardiovascularMAP (Myriad RBM, Austin, TX), which could analyze 50 biomarkers potentially linked with inflammatory, metabolic, and tissue remodeling pathways, and single ELISAs were used to confirm the results. Higher plasma adiponectin levels and a lower leptin/adiponectin ratio at enrollment were significantly associated with an annual decline in FEV1 even after controlling for age, sex, height, and body mass index in the Hokkaido COPD cohort study (P = 0.003, P = 0.004, respectively). A lower plasma leptin/adiponectin ratio was also significantly associated with an annual decline in FEV1 in subjects with airflow limitation in the CBQ study (P = 0.014), the patients of which had largely different clinical characteristics compared with the Hokkaido COPD cohort study. There were no significant associations between lung function decline and adipokine levels in subjects without airflow limitation. A lower leptin/adiponectin ratio was associated with lung function decline in patients with COPD in two independent Japanese and Western cohort studies of populations of different ethnicity. Measure of systemic adipokines may provide utility in predicting patients with COPD at higher risk of lung function decline.
Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of TH17 cell immunity
Regulatory T cells (T reg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which T reg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying T reg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal T reg cells to regulate helper T17 cell (T H 17 cell) immunity. Selectively increased intestinal T H 17 cell responses in mice with T reg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83 + CD62L lo T reg cell subset that is distinct from previously characterized intestinal T reg cell populations as the main IL-27 producers. Collectively, our study uncovers a new T reg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific T reg cell-mediated immune regulation. Regulatory T (T reg ) cells are functionally heterogeneous, yet how each T reg cell subset exerts its suppressor function remains unresolved. Lin et al. identify IL-27 as a key T reg cell effector molecule selectively required for gut T H 17 cell regulation.
Intestinal-derived ILCs migrating in lymph increase IFNγ production in response to Salmonella Typhimurium infection
Innate lymphoid cells (ILCs) are enriched in mucosae and have been described as tissue-resident. Interestingly, ILCs are also present within lymph nodes (LNs), in the interfollicular regions, the destination for lymph-migratory cells. We have previously shown that LN ILCs are supplemented by peripheral tissue-derived ILCs. Using thoracic duct cannulations, we here enumerate the intestinal lymph ILCs that traffic from the intestine to the mesenteric LNs (MLNs). We provide, for the first time, a detailed characterisation of these lymph-migratory ILCs. We show that all ILC subsets migrate in lymph, and while global transcriptional analysis reveals a shared signature with tissue-resident ILCs, lymph ILCs express migration-associated genes including S1PRs, SELL (CD62L) and CCR7. Interestingly, we discovered that while Salmonella Typhimurium infections do not increase the numbers of migrating ILCs, infection changes their composition and cytokine profile. Infection increases the proportions of RORyt+ T-bet+ ILCs, levels of IFNγ, and IFNγ/GM-CSF co-expression. Infection-induced changes in migratory ILCs are reflected in colon-draining MLN ILCs, where RORyt+ T-bet+ ILCs accumulate and display corresponding increased cytokine expression. Thus, we reveal that ILCs respond rapidly to intestinal infection and can migrate to the MLN where they produce cytokines.