Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Madéo, Julien"
Sort by:
Structure of the moiré exciton captured by imaging its electron and hole
Interlayer excitons (ILXs) — electron–hole pairs bound across two atomically thin layered semiconductors — have emerged as attractive platforms to study exciton condensation 1 – 4 , single-photon emission and other quantum information applications 5 – 7 . Yet, despite extensive optical spectroscopic investigations 8 – 12 , critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe 2 /MoS 2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe–Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology. Imaging the electron and hole that bind to form interlayer excitons in a 2D moiré material enables direct measurement of its diameter and indicates the localization of its centre of mass.
Imaging the motion of electrons across semiconductor heterojunctions
The flow of photoexcited electrons in a type-II heterostructure can be imaged with energy, spatial and temporal resolution. Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 . At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields 3 , 9 or by the excitation of photocarriers 2 , 4 , 5 , 8 . Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump–probe techniques with spectroscopic photoemission electron microscopy 10 , 11 , 12 , 13 , we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.
Harmonic generation in confinement
Quantum confinement effects offer a more comprehensive understanding of the fundamental processes that drive extreme optical nonlinearities in nano-engineered solids, opening a route to unlocking the potential of high-order harmonic generation.
A holistic view of the dynamics of long-lived valley polarized dark excitonic states in monolayer WS2
With their long lifetime and protection against decoherence, dark excitons in monolayer semiconductors offer a promising route for quantum technologies. Optical techniques have previously observed dark excitons with a long-lived valley polarization. However, several aspects remain unknown, such as the populations and time evolution of the different valley-polarized dark excitons and the role of excitation conditions. Here, using time- and angle-resolved photoemission spectroscopy, we obtain a holistic view of the dynamics after valley-selective photoexcitation. By varying experimental conditions, we reconcile between the rapid valley depolarization previously reported in TR-ARPES, and the observation of long-lived valley polarized dark excitons in optical studies. For the latter, we find that momentum-dark excitons largely dominate at early times sustaining a 40% degree of valley polarization, while valley-polarized spin-dark states dominate at longer times. Our measurements provide the timescales and how the different dark excitons contribute to the previously observed long-lived valley polarization in optics. The authors showcase the capabilities of time-resolved momentum microscopy to image spin- and valley-resolved excitons in monolayer WS₂ with high energy resolution, revealing distinct long-lived, valley-polarized dark excitons that dominate at different timescales.
High Field Single- to Few-Cycle THz Generation with Lithium Niobate
The transient terahertz (THz) pulse with high peak field has become an important tool for matter manipulation, enabling many applications such as nonlinear spectroscopy, particle acceleration, and high harmonic generation. Among the widely used THz generation techniques, optical rectification in lithium niobate (LN) has emerged as a powerful method to achieve high fields at low THz frequencies, suitable to exploring novel nonlinear phenomena in condensed matter systems. In this review, we focus on introducing single- to few-cycle THz generation in LN, including the basic principles, techniques, latest developments, and current limitations. We will first discuss the phase matching requirements of LN, which leads to Cherenkov-like radiation, and the tilted pulse front (TPF) technique. Emphasis will be put on the TPF technique, which has been shown to improve THz generation efficiency, but still has many limitations. Different geometries used to produce continuous and discrete TPF will be systematically discussed. We summarize the advantages and limitations of current techniques and future trends.
Frequency down-conversion of terahertz waves at optically induced temporal boundaries in GaAs waveguides
In this study, the frequency down-conversion of terahertz waves is analytically and experimentally demonstrated at the temporal boundaries within a GaAs waveguide. The temporal boundary is established by photoexciting the top surface of the waveguide, thereby instantaneously increasing its electrical conductivity. This photoexcited waveguide supports a transverse electromagnetic (TEM) mode with a frequency lower than those of the transverse magnetic (TM) modes present in the original waveguide. At the temporal boundary, the incident TM mode couples with the TEM mode, resulting in frequency down-conversion. Subtracting the propagation loss from the frequency-converted components indicates that the frequency conversion occurs with an efficiency consistent with the analytical predictions. The propagation loss is primarily due to ohmic loss, caused by the finite electrical conductivity of the photoexcited region. Given that the frequency of transverse electric modes is up-converted at the temporal boundary, our findings suggest that the direction of frequency conversion (upward or downward) can be controlled by manipulating the incident polarization. The polarization-dependent frequency conversion in waveguides holds significant potential for applications in devices designed for the interconversion of terahertz signals across various frequency channels. This capability is instrumental in the development of frequency-division-multiplexed terahertz wave communication systems, thereby enabling high data transfer rates.
Phase seeding of a terahertz quantum cascade laser
The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. The phase of a laser pulse is usually random, which prevents its use for phase-resolved measurements. Here, the authors seed a quantum cascade laser with coherent terahertz pulses, forcing laser action to start on a fixed phase. This kind of laser could be used as a source in time-domain spectroscopy.
Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals
Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures.
Terahertz amplifier based on gain switching in a quantum cascade laser
Terahertz time-domain spectroscopy is widely used in a broad range of applications where knowledge of both the amplitude and phase of a terahertz wave can reveal useful information about a sample 1 . However, a means of amplifying terahertz pulses, which would be of great benefit in improving the applicability of time-domain spectroscopy, is lacking. Although terahertz quantum cascade lasers 2 are promising devices for terahertz amplification 3 , gain clamping 4 limits the attainable amplification 5 . Here, we circumvent gain clamping and demonstrate amplification of terahertz pulses by ultrafast gain switching of a quantum cascade laser through the use of an integrated Auston switch 6 . This unclamps the gain by placing the laser in a non-equilibrium state that allows large amplification of the electromagnetic field within the cavity. This technique offers the potential to produce high field terahertz pulses that approach the quantum cascade laser saturation field. An amplifier for terahertz pulses is demonstrated using an Auston switch to perform ultrafast gain switching in a quantum cascade laser. The approach may benefit terahertz imaging and sensing schemes as it overcomes the phenomenon of gain clamping, which usually limits the amplification available in a laser.
Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources
We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM <10°) and photon extraction efficiencies >50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.