Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Maeda, Kayaho"
Sort by:
Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells
SignificanceTh17 cells unlike other CD4+ T helper subsets use glutaminolysis as a source of energy and upregulate Gls1. Inhibition of Gls1 ameliorates Th17 differentiation in vitro and experimental autoimmune encephalomyelitis in mice. Mechanistically this is accomplished through the upregulation of Gls1 by the Th17-promoting transcription factor, inducible cAMP early repressor (ICER). These findings claim an essential role of glutaminolysis in the generation of Th17 cells and offer an approach to control diseases linked to their generation. Glutaminolysis is a well-known source of energy for effector T cells but its contribution to each T cell subset and the mechanisms which are responsible for the control of involved metabolic enzymes are not fully understood. We report that Th17 but not Th1, Th2, or Treg cell induction in vitro depends on glutaminolysis and the up-regulation of glutaminase 1 (Gls1), the first enzyme in the glutaminolysis pathway. Both pharmacological and siRNA-based selective inhibition of Gls1 reduced in vitro Th17 differentiation and reduced the CD3/TCR-mediated increase of the mammalian target of rapamycin complex 1 activity. Treatment of mice with a Gls1 inhibitor ameliorated experimental autoimmune encephalomyelitis. Furthermore, RAG1-deficient mice that received Gls1-shRNA–transfected 2D2 T cells had reduced experimental autoimmune encephalomyelitis scores compared with those that received control-shRNA–treated cells. Next we found that T cells deficient in inducible cAMP early repressor (ICER), a transcriptional factor known to promote Th17 differentiation, display reduced activity of oxidative phosphorylation rates in the presence of glutamine and reduced Gls1 expression, both of which could be restored by ICER overexpression. Finally, we demonstrate that ICER binds to the gls1 promoter directly and increases its activity. These findings demonstrate the importance of glutaminolysis in the generation of Th17 and the direct control of Gls1 activity by the IL-17–promoting transcription factor ICER. Pharmaceutical modulation of the glutaminolysis pathway should be considered to control Th17-mediated pathology.
CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease
Podocyte malfunction occurs in autoimmune and nonautoimmune kidney disease. Calcium signaling is essential for podocyte injury, but the role of Ca2+/calmodulin-dependent kinase (CaMK) signaling in podocytes has not been fully explored. We report that podocytes from patients with lupus nephritis and focal segmental glomerulosclerosis and lupus-prone and lipopolysaccharide- or adriamycin-treated mice display increased expression of CaMK IV (CaMK4), but not CaMK2. Mechanistically, CaMK4 modulated podocyte motility by altering the expression of the GTPases Rac1 and RhoA and suppressed the expression of nephrin, synaptopodin, and actin fibers in podocytes. In addition, it phosphorylated the scaffold protein 14-3-3β, which resulted in the release and degradation of synaptopodin. Targeted delivery of a CaMK4 inhibitor to podocytes preserved their ultrastructure, averted immune complex deposition and crescent formation, and suppressed proteinuria in lupus-prone mice and proteinuria in mice exposed to lipopolysaccharide-induced podocyte injury by preserving nephrin/synaptopodin expression. In animals exposed to adriamycin, podocyte-specific delivery of a CaMK4 inhibitor prevented and reversed podocyte injury and renal disease. We conclude that CaMK4 is pivotal in immune and nonimmune podocyte injury and that its targeted cell-specific inhibition preserves podocyte structure and function and should have therapeutic value in lupus nephritis and podocytopathies, including focal segmental glomerulosclerosis.
Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation
Th17 cells favor glycolytic metabolism, and pyruvate dehydrogenase (PDH) is the key bifurcation enzyme, which in its active dephosphorylated form advances the oxidative phosphorylation from glycolytic pathway. The transcriptional factor, inducible cAMP early repressor/cAMP response element modulator (ICER/CREM), has been shown to be induced in Th17 cells and to be overexpressed in CD4⁺ T cells from the patients with systemic lupus erythematosus (SLE). We found that glycolysis and lactate production in in vitro Th17-polarized T cells was reduced and that the expression of pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2), an enzyme that converts the inactive PDH to its active form, and PDH enzyme activity were increased in Th17 cells from ICER/CREM-deficient animals. ICER was found to bind to the Pdp2 promoter and suppress its expression. Furthermore, forced expression of PDP2 in CD4⁺ cells reduced the in vitro Th17 differentiation, whereas shRNA-based suppression of PDP2 expression increased in vitro Th17 differentiation and augmented experimental autoimmune encephalomyelitis. At the translational level, PDP2 expression was decreased in memory Th17 cells from patients with SLE and forced expression of PDP2 in CD4⁺ T cells from lupus-prone MRL/lpr mice and patients with SLE suppressed Th17 differentiation. These data demonstrate the direct control of energy production during Th17 differentiation in health and disease by the transcription factor ICER/CREM at the PDH metabolism bifurcation level.
Detecting and exploring kidney-derived extracellular vesicles in plasma
Background Extracellular vesicles (EVs) have received considerable attention as ideal biomarkers for kidney diseases. Most reports have focused on urinary EVs, that are mainly derived from the cells in the urinary tract. However, the detection and the application of kidney-derived EVs in plasma remains uncertain. Methods We examined the kidney-derived small EVs (sEVs) in plasma that were supposedly released from renal mesangial and glomerular endothelial cells, using clinical samples from healthy controls and patients with kidney transplants. Plasma from healthy controls underwent ultracentrifugation, followed by on-bead flow cytometry, targeting α8 integrin, an antigen-specific to mesangial cells. To confirm the presence of kidney-derived sEVs in peripheral blood, plasma from ABO-incompatible kidney transplant recipients was ultracentrifuged, followed by western blotting for donor blood type antigens. Results Immunohistochemistry and immunoelectron microscopy confirmed α8 integrin expression in kidney mesangial cells and their sEVs. The CD9-α8 integrin double-positive sEVs were successfully detected using on-bead flow cytometry. Western blot analysis further revealed transplanted kidney-derived sEVs containing blood type B antigens in non-blood type B recipients, who had received kidneys from blood type B donors. Notably, a patient experiencing graft kidney loss exhibited diminished signals of sEVs containing donor blood type antigens. Conclusion Our findings demonstrate the potential usefulness of kidney-derived sEVs in plasma in future research for kidney diseases.
Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis
Lupus nephritis (LN) is a serious complication occurring in 50% of patients with systemic lupus erythematosus (SLE) for which there is a lack of biomarkers, a lack of specific medications, and a lack of a clear understanding of its pathogenesis. The expression of calcium/calmodulin kinase IV (CaMK4) is increased in podocytes of patients with LN and lupus-prone mice, and its podocyte-targeted inhibition averts the development of nephritis in mice. Nephrin is a key podocyte molecule essential for the maintenance of the glomerular slit diaphragm. Here, we show that the presence of fucose on N-glycans of IgG induces, whereas the presence of galactose ameliorates, podocyte injury through CaMK4 expression. Mechanistically, CaMK4 phosphorylates NF-κB, upregulates the transcriptional repressor SNAIL, and limits the expression of nephrin. In addition, we demonstrate that increased expression of CaMK4 in biopsy specimens and in urine podocytes from people with LN is linked to active kidney disease. Our data shed light on the role of IgG glycosylation in the development of podocyte injury and propose the development of \"liquid kidney biopsy\" approaches to diagnose LN.
A Case of Cryoglobulinemic Nephritis That Responded to Rituximab Monotherapy
The patient was a 65-year-old woman with ascites effusion and portal hypertension of unknown cause for the past three years, who was followed up with diuretics. Subsequently, the patient developed abdominal distention and worsening leg edema, and the laboratory test results revealed positive antinuclear antibodies, mild renal impairment, and abnormal urinalysis. After renal biopsy and laboratory tests, the patient was diagnosed with cryoglobulinemic nephritis. She was treated with rituximab monotherapy, which resulted in decreased serum creatinine and urinary protein levels and suppression of complement lowering. Thus, rituximab treatment may be effective for cryoglobulinemic nephritis.
Hyaluronic Acid Synthesis Contributes to Tissue Damage in Systemic Lupus Erythematosus
Hyaluronic acid (HA), a component of the extracellular matrix, is the ligand for CD44 and has been implicated in the pathogenesis of kidney inflammation in patients with systemic lupus erythematosus (SLE), but its direct role and mechanism of action have not been studied. Here we show that administration of hymecromone (4-Methylumbelliferone, 4-MU), an HA synthesis inhibitor, to lupus-prone mice suppressed dramatically lupus-related pathology. Interestingly, 4-MU stopped the appearance of disease when administered prior to its onset and inhibited the progression of disease when administered after its appearance. Inhibition of HA synthesis reduced tissue damage and the number of intrarenal lymphoid cell infiltrates including double negative CD3+CD4-CD8- T cells which are known to be involved in the pathogenesis of SLE. Exposure of human peripheral blood mononuclear cells to HA increased the generation of CD3+CD4-CD8- T cells through a mechanism involving Rho-associated kinase. Our results signify the importance of the HA-rich tissue microenvironment in the activation of lymphocytes to cause tissue damage in SLE and suggest the consideration of inhibition of HA synthesis to treat patients.
The clinical relevance of plasma CD147/basigin in biopsy-proven kidney diseases
BackgroundPrecise understanding of kidney disease activity is needed to design therapeutic strategies. CD147/basigin is involved in the pathogenesis of acute kidney injury and renal fibrosis through inflammatory cell infiltration. The present study examined the clinical relevance of CD147 in biopsy-proven kidney diseases that lead to the progression of chronic kidney disease.MethodsKidney biopsy specimens and plasma and urine samples were obtained from patients with kidney diseases, including IgA nephropathy (IgAN), Henoch–Schönlein purpura nephritis (HSPN), diabetic kidney disease (DKD), focal segmental glomerulosclerosis (FSGS), and membranous nephropathy (MN), who underwent renal biopsy between 2011 and 2014. Plasma and urinary CD147 levels were measured and evaluated for their ability to reflect histological features. Disease activity of IgAN tissues was evaluated according to the Oxford classification and the Japanese histological grading system.ResultsIn biopsy tissues, CD147 induction was detected in injured lesions representing renal inflammation. Plasma CD147 values correlated with eGFR in patients with inflammation-related kidney diseases such as IgAN, HSPN, and DKD. Particularly in IgAN patients, plasma CD147 levels were correlated with injured regions comprising more than 50% of glomeruli or with tubular atrophy/interstitial injury in biopsy tissues. Proteinuria showed a closer correlation with urinary values of CD147 and L-FABP. Of note, plasma and urinary CD147 levels showed a strong correlation with eGFR or proteinuria, respectively, only in DKD patients.ConclusionEvaluation of plasma and urinary CD147 levels might provide key insights for the understanding of the activity of various kidney diseases.
Protocol for a Phase 1, Open-Label, Multiple-Center, Dose-Escalation Study to Evaluate the Safety and Tolerability of ADR-001 in the Treatment of Immunoglobulin A Nephropathy
Immunoglobulin A (IgA) nephropathy is a disease that presents with urinary symptoms such as glomerular hematuria and urinary protein positivity, with predominant deposition of IgA in the mesangial region of the glomerulus. Corticosteroids are mainly used for treatment; however, infection is a serious adverse event, and evidence regarding therapeutic efficacy is insufficient, thus new treatments are strongly desired. Mesenchymal stem cells (MSCs) contribute to the amelioration of inflammation and recovery of organ function in inflammatory environments by converting the character of leukocytes from inflammatory to anti-inflammatory and inducing the proliferation and differentiation of organ component cells, respectively. These properties of MSCs have led to their clinical application in various inflammatory diseases, but this study is the first clinical trial of MSCs for refractory glomerulonephritis in the world. This study is registered and assigned the number, jRCT2043200002 and NCT04342325. This will be a phase 1, open-label, multiple-center, dose-escalation study of adult patients with refractory IgA nephropathy resistant to or difficult to treat with existing therapies. ADR-001 will be administered intravenously to from three to six patients at a dose of 1 × 10 cells once in the first cohort and to six patients twice at 2-week intervals in the second cohort, and observation will continue until 52 weeks. The primary endpoint will be the evaluation of adverse events up to 6 weeks after the start of ADR-001 administration. Secondary endpoints will be the respective percentages of patients with adverse events, clinical remission, partial remission, remission of urine protein, remission of hematuria, time to remission, changes in urine protein, hematuria, and estimated glomerular filtration rate. Following the administration of ADR-001 to patients with IgA nephropathy, the respective percentages of patients with adverse events, asymptomatic pulmonary emboli, clinical remission, partial remission, urine protein remission, hematuria remission, their time to remission, changes in urine protein, hematuria, and glomerular filtration rate will be determined. This study will evaluate the safety and tolerability of ADR-001 and confirm its therapeutic efficacy in adult patients with refractory IgA nephropathy.
Basigin deficiency prevents anaplerosis and ameliorates insulin resistance and hepatosteatosis
Monocarboxylates, such as lactate and pyruvate, are precursors for biosynthetic pathways, including those for glucose, lipids, and amino acids via the tricarboxylic acid (TCA) cycle and adjacent metabolic networks. The transportation of monocarboxylates across the cellular membrane is performed primarily by monocarboxylate transporters (MCTs), the membrane localization and stabilization of which are facilitated by the transmembrane protein basigin (BSG). Here, we demonstrate that the MCT/BSG axis sits at a crucial intersection of cellular metabolism. Abolishment of MCT1 in the plasma membrane was achieved by Bsg depletion, which led to gluconeogenesis impairment via preventing the influx of lactate and pyruvate into the cell, consequently suppressing the TCA cycle. This net anaplerosis suppression was compensated in part by the increased utilization of glycogenic amino acids (e.g., alanine and glutamine) into the TCA cycle and by activated ketogenesis through fatty acid β-oxidation. Complementary to these observations, hyperglycemia and hepatic steatosis induced by a high-fat diet were ameliorated in Bsg-deficient mice. Furthermore, Bsg deficiency significantly improved insulin resistance induced by a high-fat diet. Taken together, the plasma membrane-selective modulation of lactate and pyruvate transport through BSG inhibition could potentiate metabolic flexibility to treat metabolic diseases.