Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
168
result(s) for
"Maeda, Shoji"
Sort by:
Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes
by
Qu, Qianhui
,
Maeda, Shoji
,
Robertson, Michael J.
in
Acetylcholine receptors (muscarinic)
,
Anatomy
,
Binding
2019
Muscarinic acetylcholine receptors are G protein–coupled receptors that respond to acetylcholine and play important signaling roles in the nervous system. There are five muscarinic receptor subtypes (M1R to M5R), which, despite sharing a high degree of sequence identity in the transmembrane region, couple to different heterotrimeric GTP-binding proteins (G proteins) to transmit signals. M1R, M3R, and M5R couple to the Gq/11 family, whereas M2R and M4R couple to the Gi/o family. Here, we present and compare the cryo–electron microscopy structures of M1R in complex with G11 and M2R in complex with GoA. The M1R-G11 complex exhibits distinct features, including an extended transmembrane helix 5 and carboxyl-terminal receptor tail that interacts with G protein. Detailed analysis of these structures provides a framework for understanding the molecular determinants of G-protein coupling selectivity.
Journal Article
Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family
2020
Heterotrimeric G proteins are categorized into four main families based on their function and sequence, Gs, Gi/o, Gq/11, and G12/13. One receptor can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. However, the precise mechanism underlying different coupling efficiencies is unknown. Here, we study the structural mechanism underlying primary and secondary Gi/o coupling, using the muscarinic acetylcholine receptor type 2 (M2R) as the primary Gi/o-coupling receptor and the β
2
-adrenergic receptor (β
2
AR, which primarily couples to Gs) as the secondary Gi/o-coupling receptor. Hydrogen/deuterium exchange mass spectrometry and mutagenesis studies reveal that the engagement of the distal C-terminus of Gαi/o with the receptor differentiates primary and secondary Gi/o couplings. This study suggests that the conserved hydrophobic residue within the intracellular loop 2 of the receptor (residue 34.51) is not critical for primary Gi/o-coupling; however, it might be important for secondary Gi/o-coupling.
G protein-coupled receptors (GPCRs) can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. Here authors use hydrogen/deuterium exchange mass spectrometry and mutagenesis to study the structural mechanism underlying primary and secondary Gi/o coupling.
Journal Article
Structure of the connexin 26 gap junction channel at 3.5 Å resolution
by
Tsukihara, Tomitake
,
Nakagawa, So
,
Yamashita, Eiki
in
Animals
,
Biological and medical sciences
,
Cell Line
2009
Gap junctions consist of arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. Here we report the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 Å resolution, and discuss structural determinants of solute transport through the channel. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a positively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage.
The connexin 26 gap junction
The intercellular communication that is so important in multicellular organisms can be achieved by gap junction channels, arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. In this issue, Maeda
et al
. report the first X-ray crystal structure of a gap junction channel — human connexin 26 — at 3.5 Å. The structure reveals two transmembrane hemichannels, each with characteristic features: a positively charged cytoplasmic entrance, a funnel, a negatively charged path and an extracellular cavity. The structure provides insight into channel gating by transjunctional voltage.
This paper presents the X-ray crystal structure of a gap junction channel at 3.5 Å resolution. The structure shows how human connexin 26 connexons interact, in an apparently open conformation, and provides insight into channel gating by the transjunctional voltage.
Journal Article
Development of an antibody fragment that stabilizes GPCR/G-protein complexes
2018
Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gβγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes.
The determination of high resolution structures of G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins is challenging. Here authors develop an antibody fragment, mAB16, which stabilizes GPCR/G-protein complexes and facilitates the application of high resolution cryo-EM.
Journal Article
Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine
2020
The α
2
adrenergic receptors (α
2
ARs) are G protein-coupled receptors (GPCRs) that respond to adrenaline and noradrenaline and couple to the Gi/o family of G proteins. α
2
ARs play important roles in regulating the sympathetic nervous system. Dexmedetomidine is a highly selective α
2
AR agonist used in post-operative patients as an anxiety-reducing, sedative medicine that decreases the requirement for opioids. As is typical for selective αAR agonists, dexmedetomidine consists of an imidazole ring and a substituted benzene moiety lacking polar groups, which is in contrast to βAR-selective agonists, which share an ethanolamine group and an aromatic system with polar, hydrogen-bonding substituents. To better understand the structural basis for the selectivity and efficacy of adrenergic agonists, we determined the structure of the α
2B
AR in complex with dexmedetomidine and Go at a resolution of 2.9 Å by single-particle cryo-EM. The structure reveals the mechanism of α
2
AR-selective activation and provides insights into Gi/o coupling specificity.
A cryo-EM structure of the GPCR α
2B
adrenergic receptor (α
2B
AR) in complex with the selective agonist dexmedetomidine and the G protein Go suggests a mechanism of selective activation and provides insights into G-protein coupling activity.
Journal Article
Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor
2023
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Here, using cryo-electron microscopy and solution NMR, the authors reveal the structural and dynamic mechanisms underlying the signaling versatility of a muscarinic receptor regulated by orthosteric and allosteric ligands.
Journal Article
Structural basis for catalysis and selectivity of phospholipid synthesis by eukaryotic choline-phosphotransferase
by
Horibata, Yasuhiro
,
Kwarcinski, Frank E.
,
Lam, Vinson
in
101/28
,
631/45/173
,
631/535/1258/1259
2025
Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5′-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells. Here we present the structure of the yeast CPT1 in multiple substrate-bound states. Structural and functional analysis of these binding-sites reveal the critical residues for the DAG acyl-chain preference and the choline/ethanolamine selectivity. Additionally, we present the structure in complex with a potent inhibitor characterized in this study. The ensemble of structures allows us to propose the reaction mechanism for phospholipid biosynthesis by the family of CDP-alcohol phosphotransferases (CDP-APs).
Here, the authors present the cryo-EM structure of yeast CPT1, a critical enzyme in phospholipid synthesis, identifying residues crucial for substrate preference. This enable a reaction mechanism for the family of CDP-alcohol phosphotransferases to be proposed.
Journal Article
Structure of the gap junction channel and its implications for its biological functions
2011
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.
Journal Article
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit
by
Matile, Hugues
,
Marino, Jacopo
,
Mohammed, Inayatulla
in
Animals
,
Atoms & subatomic particles
,
Biochemistry and Chemical Biology
2019
One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.
Journal Article
Crystallization Scale Preparation of a Stable GPCR Signaling Complex between Constitutively Active Rhodopsin and G-Protein
2014
The activation of the G-protein transducin (Gt) by rhodopsin (Rho) has been intensively studied for several decades. It is the best understood example of GPCR activation mechanism and serves as a template for other GPCRs. The structure of the Rho/G protein complex, which is transiently formed during the signaling reaction, is of particular interest. It can help understanding the molecular details of how retinal isomerization leads to the G protein activation, as well as shed some light on how GPCR recognizes its cognate G protein. The native Rho/Gt complex isolated from bovine retina suffers from low stability and loss of the retinal ligand. Recently, we reported that constitutively active mutant of rhodopsin E113Q forms a Rho/Gt complex that is stable in detergent solution. Here, we introduce methods for a large scale preparation of the complex formed by the thermo-stabilized and constitutively active rhodopsin mutant N2C/M257Y/D282C(RhoM257Y) and the native Gt purified from bovine retinas. We demonstrate that the light-activated rhodopsin in this complex contains a covalently bound unprotonated retinal and therefore corresponds to the active metarhodopin II state; that the isolated complex is active and dissociates upon addition of GTPγS; and that the stoichiometry corresponds to a 1∶1 molar ratio of rhodopsin to the heterotrimeric G-protein. And finally, we show that the rhodopsin also forms stable complex with Gi. This complex has significantly higher thermostability than RhoM257Y/Gt complex and is resistant to a variety of detergents. Overall, our data suggest that the RhoM257Y/Gi complex is an ideal target for future structural and mechanistic studies of signaling in the visual system.
Journal Article