Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Maes, Hermine H."
Sort by:
OpenMx 2.0: Extended Structural Equation and Statistical Modeling
The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.
Genetic and Environmental Variation in Continuous Phenotypes in the ABCD Study
Twin studies yield valuable insights into the sources of variation, covariation and causation in human traits. The ABCD Study® (abcdstudy.org) was designed to take advantage of four universities known for their twin research, neuroimaging, population-based sampling, and expertise in genetic epidemiology so that representative twin studies could be performed. In this paper we use the twin data to: (i) provide initial estimates of heritability for the wide range of phenotypes assessed in the ABCD Study using a consistent direct variance estimation approach, assuring that both data and methodology are sound; and (ii) provide an online resource for researchers that can serve as a reference point for future behavior genetic studies of this publicly available dataset. Data were analyzed from 772 pairs of twins aged 9–10 years at study inception, with zygosity determined using genotypic data, recruited and assessed at four twin hub sites. The online tool provides twin correlations and both standardized and unstandardized estimates of additive genetic, and environmental variation for 14,500 continuously distributed phenotypic features, including: structural and functional neuroimaging, neurocognition, personality, psychopathology, substance use propensity, physical, and environmental trait variables. The estimates were obtained using an unconstrained variance approach, so they can be incorporated directly into meta-analyses without upwardly biasing aggregate estimates. The results indicated broad consistency with prior literature where available and provided novel estimates for phenotypes without prior twin studies or those assessed at different ages. Effects of site, self-identified race/ethnicity, age and sex were statistically controlled. Results from genetic modeling of all 53,172 continuous variables, including 38,672 functional MRI variables, will be accessible via the user-friendly open-access web interface we have established, and will be updated as new data are released from the ABCD Study. This paper provides an overview of the initial results from the twin study embedded within the ABCD Study, an introduction to the primary research domains in the ABCD study and twin methodology, and an evaluation of the initial findings with a focus on data quality and suitability for future behavior genetic studies using the ABCD dataset. The broad introductory material is provided in recognition of the multidisciplinary appeal of the ABCD Study. While this paper focuses on univariate analyses, we emphasize the opportunities for multivariate, developmental and causal analyses, as well as those evaluating heterogeneity by key moderators such as sex, demographic factors and genetic background.
Mental health and music engagement: review, framework, and guidelines for future studies
Is engaging with music good for your mental health? This question has long been the topic of empirical clinical and nonclinical investigations, with studies indicating positive associations between music engagement and quality of life, reduced depression or anxiety symptoms, and less frequent substance use. However, many earlier investigations were limited by small populations and methodological limitations, and it has also been suggested that aspects of music engagement may even be associated with worse mental health outcomes. The purpose of this scoping review is first to summarize the existing state of music engagement and mental health studies, identifying their strengths and weaknesses. We focus on broad domains of mental health diagnoses including internalizing psychopathology (e.g., depression and anxiety symptoms and diagnoses), externalizing psychopathology (e.g., substance use), and thought disorders (e.g., schizophrenia). Second, we propose a theoretical model to inform future work that describes the importance of simultaneously considering music-mental health associations at the levels of (1) correlated genetic and/or environmental influences vs. (bi)directional associations, (2) interactions with genetic risk factors, (3) treatment efficacy, and (4) mediation through brain structure and function. Finally, we describe how recent advances in large-scale data collection, including genetic, neuroimaging, and electronic health record studies, allow for a more rigorous examination of these associations that can also elucidate their neurobiological substrates.
Heritability of Childhood Music Engagement and Associations with Language and Executive Function: Insights from the Adolescent Brain Cognitive Development (ABCD) Study
Music engagement is a powerful, influential experience that often begins early in life. Music engagement is moderately heritable in adults (~ 41–69%), but fewer studies have examined genetic influences on childhood music engagement, including their association with language and executive functions. Here we explored genetic and environmental influences on music listening and instrument playing (including singing) in the baseline assessment of the Adolescent Brain Cognitive Development study. Parents reported on their 9–10-year-old children’s music experiences (N = 11,876 children; N = 1543 from twin pairs). Both music measures were explained primarily by shared environmental influences. Instrument exposure (but not frequency of instrument engagement) was associated with language skills (r = .27) and executive functions (r = .15–0.17), and these associations with instrument engagement were stronger than those for music listening, visual art, or soccer engagement. These findings highlight the role of shared environmental influences between early music experiences, language, and executive function, during a formative time in development.
Determining the stability of genome-wide factors in BMI between ages 40 to 69 years
Genome-wide association studies (GWAS) have successfully identified common variants associated with BMI. However, the stability of aggregate genetic variation influencing BMI from midlife and beyond is unknown. By analysing 165,717 men and 193,073 women from the UKBiobank, we performed BMI GWAS on six independent five-year age intervals between 40 and 72 years. We then applied genomic structural equation modeling to test competing hypotheses regarding the stability of genetic effects for BMI. LDSR genetic correlations between BMI assessed between ages 40 to 73 were all very high and ranged 0.89 to 1.00. Genomic structural equation modeling revealed that molecular genetic variance in BMI at each age interval could not be explained by the accumulation of any age-specific genetic influences or autoregressive processes. Instead, a common set of stable genetic influences appears to underpin genome-wide variation in BMI from middle to early old age in men and women alike.
Reconsidering the Heritability of Intelligence in Adulthood: Taking Assortative Mating and Cultural Transmission into Account
Heritability estimates of general intelligence in adulthood generally range from 75 to 85%, with all heritability due to additive genetic influences, while genetic dominance and shared environmental factors are absent, or too small to be detected. These estimates are derived from studies based on the classical twin design and are based on the assumption of random mating. Yet, considerable positive assortative mating has been reported for general intelligence. Unmodeled assortative mating may lead to biased estimates of the relative magnitude of genetic and environmental factors. To investigate the effects of assortative mating on the estimates of the variance components of intelligence, we employed an extended twin-family design. Psychometric IQ data were available for adult monozygotic and dizygotic twins, their siblings, the partners of the twins and siblings, and either the parents or the adult offspring of the twins and siblings ( N  = 1314). Two underlying processes of assortment were considered: phenotypic assortment and social homogamy. The phenotypic assortment model was slightly preferred over the social homogamy model, suggesting that assortment for intelligence is mostly due to a selection of mates on similarity in intelligence. Under the preferred phenotypic assortment model, the variance of intelligence in adulthood was not only due to non-shared environmental (18%) and additive genetic factors (44%) but also to non-additive genetic factors (27%) and phenotypic assortment (11%).This non-additive nature of genetic influences on intelligence needs to be accommodated in future GWAS studies for intelligence.
Notes on Three Decades of Methodology Workshops
Since 1987, a group of behavior geneticists have been teaching an annual methodology workshop on how to use state-of-the-art methods to analyze genetically informative data. In the early years, the focus was on analyzing twin and family data, using information of their known genetic relatedness to infer the role of genetic and environmental factors on phenotypic variation. With the rapid evolution of genotyping and sequencing technology and availability of measured genetic data, new methods to detect genetic variants associated with human traits were developed and became the focus of workshop teaching in alternate years. Over the years, many of the methodological advances in the field of statistical genetics have been direct outgrowths of the workshop, as evidence by the software and methodological publications authored by workshop faculty. We provide data and demographics of workshop attendees and evaluate the impact of the methodology workshops on scientific output in the field by evaluating the number of papers applying specific statistical genetic methodologies authored by individuals who have attended workshops.
Genetic and Environmental Contributions to the Relationships Between Brain Structure and Average Lifetime Cigarette Use
Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case–control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51–59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology.
The Genetic Basis of Political Sophistication
Political sophistication is a concept that encompasses political reasoning, the coherence of people's issue attitudes, and their knowledge of political processes. To what extent is political sophistication affected by genes and environments? Do these distinct but related measures of sophistication share a common genetic structure? We analyze survey data collected from participants in the Minnesota Twin Registry to estimate influences of genes and environments on variables used to measure political sophistication. Additive genetic factors explain 48–76% of the variation in educational attainment, political interest, and political knowledge, while dominance genetics influence 28% of the variance of ideological consistency. Multivariate analyses show that, although these measures share common genetic and unique environmental factors to a modest extent, much of the variance is explained by specific genetic and unique environmental factors. Ideological consistency appears to be mostly distinct from the other measures, as it is strongly accounted for by unique environmental influences.
Nicholas (Nick) G. Martin and the Extended Twin Model
The extended twin model is a unique design in the genetic epidemiology toolbox that allows to simultaneously estimate multiple causes of variation such as genetic and cultural transmission, genotype–environment covariance and assortative mating, among others. Nick Martin has played a key role in the conception of the model, the collection of substantially large data sets to test the model, the application of the model to a range of phenotypes, the publication of the results including cross-cultural comparisons, the evaluation of bias and power of the design and the further elaborations of the model, such as the children-of-twins design.