Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Magaña-Loaiza, Omar S"
Sort by:
High-dimensional quantum cryptography with twisted light
2015
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
Journal Article
Single-shot measurement of the orbital-angular-momentum spectrum of light
by
Kulkarni, Girish
,
Boyd, Robert W.
,
Sahu, Rishabh
in
639/624/400/482
,
639/766/400/3925
,
639/766/483/481
2017
The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer from issues such as poor efficiency, strict interferometric stability requirements, and too much loss. Furthermore, most techniques inevitably discard part of the field and measure only a post-selected portion of the true spectrum. Here, we propose and demonstrate an interferometric technique for measuring the true OAM spectrum of optical fields in a single-shot manner. Our technique directly encodes the OAM-spectrum information in the azimuthal intensity profile of the output interferogram. In the absence of noise, the spectrum can be fully decoded using a single acquisition of the output interferogram, and, in the presence of noise, acquisition of two suitable interferograms is sufficient for the purpose. As an important application of our technique, we demonstrate measurements of the angular Schmidt spectrum of the entangled photons produced by parametric down-conversion and report a broad spectrum with the angular Schmidt number 82.1.
Efficient measurement of orbital angular momentum spectra presents open challenges. Here, the authors demonstrate a highly-efficient interferometric technique in which the OAM-spectrum information is encoded in the azimuthal intensity profile of the output interferogram.
Journal Article
Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication
2014
We describe a procedure by which a long ( ) optical path through atmospheric turbulence can be experimentally simulated in a controlled fashion and scaled down to distances easily accessible in a laboratory setting. This procedure is then used to simulate a 1 km long free-space communication link in which information is encoded in orbital angular momentum spatial modes. We also demonstrate that standard adaptive optics methods can be used to mitigate many of the effects of thick atmospheric turbulence.
Journal Article
Exotic looped trajectories of photons in three-slit interference
by
Safari, Akbar
,
Magaña-Loaiza, Omar S
,
Banzer, Peter
in
132/122
,
639/624/400/482
,
639/766/483/1139
2016
The validity of the superposition principle and of Born’s rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure. Here we confirm the validity of Born’s rule and present the first experimental observation of exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photon’s wavefunction.
Looped trajectories of photons in a three-slit interference experiment could modify the resulting intensity pattern, but they are experimentally hard to observe. Here the authors exploit surface plasmon excitations to increase their probability, measuring their contribution and confirming Born’s rule.
Journal Article
Observation of the modification of quantum statistics of plasmonic systems
by
Quiroz-Juárez, Mario A.
,
León-Montiel, Roberto de J.
,
Fabre, Joshua
in
639/624/400/1021
,
639/624/400/482
,
639/766/483/3925
2021
For almost two decades, researchers have observed the preservation of the quantum statistical properties of bosons in a large variety of plasmonic systems. In addition, the possibility of preserving nonclassical correlations in light-matter interactions mediated by scattering among photons and plasmons stimulated the idea of the conservation of quantum statistics in plasmonic systems. It has also been assumed that similar dynamics underlie the conservation of the quantum fluctuations that define the nature of light sources. So far, plasmonic experiments have been performed in nanoscale systems in which complex multiparticle interactions are restrained. Here, we demonstrate that the quantum statistics of multiparticle systems are not always preserved in plasmonic platforms and report the observation of their modification. Moreover, we show that optical near fields provide additional scattering paths that can induce complex multiparticle interactions. Remarkably, the resulting multiparticle dynamics can, in turn, lead to the modification of the excitation mode of plasmonic systems. These observations are validated through the quantum theory of optical coherence for single- and multi-mode plasmonic systems. Our findings unveil the possibility of using multiparticle scattering to perform exquisite control of quantum plasmonic systems.
So far, experimental results have favoured the often unstated assumption that quantum statistical properties of multiparticle systems are preserved in plasmonic platforms. Here, the authors show how multiparticle interference in photon-plasmon scattering can modify the excitation mode of plasmonic systems.
Journal Article
Multiparticle quantum plasmonics
by
Nellikka, Apurv Chaitanya
,
Magaña-Loaiza, Omar S.
,
De Leon, Israel
in
Control systems
,
Electromagnetic fields
,
multiparticle interactions
2020
A single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.
Journal Article
Smart quantum statistical imaging beyond the Abbe-Rayleigh criterion
by
Quiroz-Juárez, Mario A.
,
León-Montiel, Roberto de J.
,
Magaña-Loaiza, Omar S.
in
639/624/1075/1083
,
639/766/400/482
,
Artificial intelligence
2022
The wave nature of light imposes limits on the resolution of optical imaging systems. For over a century, the Abbe-Rayleigh criterion has been utilized to assess the spatial resolution limits of imaging instruments. Recently, there has been interest in using spatial projective measurements to enhance the resolution of imaging systems. Unfortunately, these schemes require a priori information regarding the coherence properties of “unknown” light beams and impose stringent alignment conditions. Here, we introduce a smart quantum camera for superresolving imaging that exploits the self-learning features of artificial intelligence to identify the statistical fluctuations of unknown mixtures of light sources at each pixel. This is achieved through a universal quantum model that enables the design of artificial neural networks for the identification of photon fluctuations. Our protocol overcomes limitations of existing superresolution schemes based on spatial mode projections, and consequently provides alternative methods for microscopy, remote sensing, and astronomy.
Journal Article
Isolating the classical and quantum coherence of a multiphoton system
by
Dawkins, Riley B.
,
Magaña-Loaiza, Omar S.
,
Mostafavi, Fatemeh
in
Atoms & subatomic particles
,
Electrons
,
Engineering
2024
The classical properties of thermal light fields were instrumental in shaping our early understanding of light. Before the invention of the laser, thermal light was used to investigate the wave-particle duality of light. The subsequent formulation of the quantum theory of electromagnetic radiation later confirmed the classical nature of thermal light fields. Here, we fragment a pseudothermal field into its multiparticle constituents to demonstrate that it can host multiphoton dynamics mediated by either classical or quantum properties of coherence. This is shown in a forty-particle system through a process of scattering mediated by twisted paths endowed with orbital angular momentum. This platform enables accurate projections of the scattered pseudothermal system into isolated multiphoton subsystems governed by quantum dynamics. Interestingly, the isolated multiphoton subsystems exhibiting quantum coherence produce interference patterns previously attributed to entangled optical systems. As such, our work unveils novel mechanisms to isolate quantum systems from classical fields. This possibility opens new paradigms in quantum physics with enormous implications for the development of robust quantum technologies.
Journal Article
Nonclassical near-field dynamics of surface plasmons
by
Hong, Mingyuan
,
Magaña-Loaiza, Omar S.
,
Dawkins, Riley B.
in
639/624/400/1021
,
639/624/400/3925
,
639/624/400/482
2024
The coupling of photons to collective charge oscillations at the surface of a metal to form surface-plasmon polaritons enables strong confinement of electromagnetic near fields in the vicinity of photonic nanostructures. Even though surface plasmons are formed from bosons and fermions, this kind of near-field wave exhibits bosonic properties in the limit of many electrons. Here we show that the classical near-field dynamics of surface plasmons are defined by nonclassical processes of scattering among their constituent multiparticle subsystems. We isolate multiparticle plasmonic subsystems to demonstrate that their quantum dynamics are governed by either bosonic or fermionic processes of coherence. We also discuss the quantum-coherence properties of plasmonic fields excited by the vacuum fluctuations of the electromagnetic field. Our findings uncover multiparticle properties of electromagnetic near fields with important implications for quantum technology.
Most applications of surface plasmons are based on their near-field properties. These properties are now shown to be governed by nonclassical scattering between multiparticle plasmonic subsystems.
Journal Article
Multiphoton quantum van Cittert-Zernike theorem
by
León-Montiel, Roberto de J
,
Magaña-Loaiza, Omar S
,
You, Chenglong
in
Light
,
Optics
,
Propagation
2023
Recent progress on quantum state engineering has enabled the preparation of quantum photonic systems comprising multiple interacting particles. Interestingly, multiphoton quantum systems can host many complex forms of interference and scattering processes that are essential to perform operations that are intractable on classical systems. Unfortunately, the quantum coherence properties of multiphoton systems degrade upon propagation leading to undesired quantum-to-classical transitions. Furthermore, the manipulation of multiphoton quantum systems requires nonlinear interactions at the few-photon level. Here, we introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems. This fundamental theorem demonstrates that the quantum statistical fluctuations, which define the nature of diverse light sources, can be modified upon propagation in the absence of light-matter interactions. The generality of our formalism unveils the conditions under which the evolution of multiphoton systems can lead to surprising photon statistics modifications. Specifically, we show that the implementation of conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit. Remarkably, this effect cannot be explained through the classical theory of optical coherence. As such, our work opens new paradigms within the established field of quantum coherence.
Journal Article