Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
261
result(s) for
"Magnuson, Mark A."
Sort by:
ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes
by
Dudek, Karrie D.
,
Shrestha, Shristi
,
Trinh, Linh T.
in
Animal genetics
,
Animals
,
Biology and Life Sciences
2023
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (
Zfp92
), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global
Zfp92
knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of
Zfp92
leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of
Zfp92
leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets,
Zfp92
influences blood glucose concentration in postnatal mice via transcriptional effects on
Mafb
, whereas in adipose and muscle, it regulates
Acacb
, a rate-limiting enzyme in fatty acid metabolism. In the absence of
Zfp92
, a novel TE-
Capn11
fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the
Capn11
gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Journal Article
Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity
by
Yuan, Weiping
,
Kaestner, Klaus H.
,
Jiao, Yang
in
Animals
,
Biology
,
Cell Differentiation - genetics
2013
All pancreatic endocrine cell types arise from a common endocrine precursor cell population, yet the molecular mechanisms that establish and maintain the unique gene expression programs of each endocrine cell lineage have remained largely elusive. Such knowledge would improve our ability to correctly program or reprogram cells to adopt specific endocrine fates. Here, we show that the transcription factor Nkx6.1 is both necessary and sufficient to specify insulin-producing beta cells. Heritable expression of Nkx6.1 in endocrine precursors of mice is sufficient to respecify non-beta endocrine precursors towards the beta cell lineage, while endocrine precursor- or beta cell-specific inactivation of Nkx6.1 converts beta cells to alternative endocrine lineages. Remaining insulin(+) cells in conditional Nkx6.1 mutants fail to express the beta cell transcription factors Pdx1 and MafA and ectopically express genes found in non-beta endocrine cells. By showing that Nkx6.1 binds to and represses the alpha cell determinant Arx, we identify Arx as a direct target of Nkx6.1. Moreover, we demonstrate that Nkx6.1 and the Arx activator Isl1 regulate Arx transcription antagonistically, thus establishing competition between Isl1 and Nkx6.1 as a critical mechanism for determining alpha versus beta cell identity. Our findings establish Nkx6.1 as a beta cell programming factor and demonstrate that repression of alternative lineage programs is a fundamental principle by which beta cells are specified and maintained. Given the lack of Nkx6.1 expression and aberrant activation of non-beta endocrine hormones in human embryonic stem cell (hESC)-derived insulin(+) cells, our study has significant implications for developing cell replacement therapies.
Journal Article
Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver
by
Browning, Jeffrey D.
,
He, Tianteng
,
Fletcher, Justin A.
in
Animals
,
Biomedical research
,
Biopsy
2015
Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.
Journal Article
Ghrelin Expression in the Mouse Pancreas Defines a Unique Multipotent Progenitor Population
by
Sussel, Lori
,
Magnuson, Mark A.
,
Gross, Stefanie
in
Animals
,
Basic Helix-Loop-Helix Transcription Factors - genetics
,
Basic Helix-Loop-Helix Transcription Factors - metabolism
2012
Pancreatic islet cells provide the major source of counteractive endocrine hormones required for maintaining glucose homeostasis; severe health problems result when these cell types are insufficiently active or reduced in number. Therefore, the process of islet endocrine cell lineage allocation is critical to ensure there is a correct balance of islet cell types. There are four endocrine cell types within the adult islet, including the glucagon-producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells and pancreatic polypeptide-producing PP cells. A fifth islet cell type, the ghrelin-producing epsilon cells, is primarily found during gestational development. Although hormone expression is generally assumed to mark the final entry to a determined cell state, we demonstrate in this study that ghrelin-expressing epsilon cells within the mouse pancreas do not represent a terminally differentiated endocrine population. Ghrelin cells give rise to significant numbers of alpha and PP cells and rare beta cells in the adult islet. Furthermore, pancreatic ghrelin-producing cells are maintained in pancreata lacking the essential endocrine lineage regulator Neurogenin3, and retain the ability to contribute to cells within the pancreatic ductal and exocrine lineages. These results demonstrate that the islet ghrelin-expressing epsilon cells represent a multi-potent progenitor cell population that delineates a major subgrouping of the islet endocrine cell populations. These studies also provide evidence that many of hormone-producing cells within the adult islet represent heterogeneous populations based on their ontogeny, which could have broader implications on the regulation of islet cell ratios and their ability to effectively respond to fluctuations in the metabolic environment during development.
Journal Article
Fat Cell–Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism
by
Lawrence, John C.
,
Harris, Thurl E.
,
Kim, Jason K.
in
Adipocytes
,
Adipokines - metabolism
,
Adipose Tissue - cytology
2010
Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell-specific rictor knockout (FRic(-/-)) mice.
Insulin signaling and glucose and lipid metabolism were studied in FRic(-/-) fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp.
Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3beta phosphorylation at S9 is not affected. The signaling defects in FRic(-/-) fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic(-/-) mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis.
Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells.
Journal Article
Pancreatic islet β-cell subtypes are derived from biochemically-distinct and nutritionally-regulated islet progenitors
2025
Endocrine islet β cells comprise heterogenous subtypes with different gene expression and function levels. Here we study when/how this heterogeneity is induced and how long each subtype maintains its characteristic properties. We show that islet progenitors with distinct gene expression and DNA methylation patterns produce β-cell subtypes of different secretory function, proliferation rate, and viability in male and female mice. These subtypes have differential gene expression that regulates insulin vesicle production or stimulation-secretion coupling and differential DNA methylation in the putative enhancers of these genes. Maternal obesity, a major diabetes risk factor, reduces the proportion of the β-cell subtype with higher levels of glucose responsiveness. The gene signature that defines mouse β-cell subtypes can reliably divide human cells into two sub-populations, with the one having higher predicted glucose responsiveness reduced in diabetic donors. These results suggest that β-cell subtypes can be derived from islet progenitor subsets modulated by maternal nutrition.
Brown et al. show that mouse islet progenitors with different transcriptomes produce distinct β-cell subtypes and maternal diet alter the subtype proportions. Similar β-cell subsets exist in humans, with a subset enriched in genes related to β cell function reduced in diabetes.
Journal Article
Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function
2009
Neurog3 (Neurogenin 3 or Ngn3) is both necessary and sufficient to induce endocrine islet cell differentiation from embryonic pancreatic progenitors. Since robust Neurog3 expression has not been detected in hormone-expressing cells, Neurog3 is used as an endocrine progenitor marker and regarded as dispensable for the function of differentiated islet cells. Here we used 3 independent lines of Neurog3 knock-in reporter mice and mRNA/protein-based assays to examine Neurog3 expression in hormone-expressing islet cells. Neurog3 mRNA and protein are detected in hormone-producing cells at both embryonic and adult stages. Significantly, inactivating Neurog3 in insulin-expressing β cells at embryonic stages or in Pdx1-expressing islet cells in adults impairs endocrine function, a phenotype that is accompanied by reduced expression of several Neurog3 target genes that are essential for islet cell differentiation, maturation, and function. These findings demonstrate that Neurog3 is required not only for initiating endocrine cell differentiation, but also for promoting islet cell maturation and maintaining islet function.
Journal Article
Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance
2005
Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in adipocyte differentiation, glucose metabolism, and other physiological processes. To further explore the role of PPARγ in adipose tissues, we used a Cre/loxP strategy to generate adipose-specific PPARγ knockout mice. These animals exhibited marked abnormalities in the formation and function of both brown and white adipose tissues. When fed a high-fat diet, adipose-specific PPARγ knockout mice displayed diminished weight gain despite hyperphagia, had diminished serum concentrations of both leptin and adiponectin, and did not develop glucose intolerance or insulin resistance. Characterization of in vivo glucose dynamics pointed to improved hepatic glucose metabolism as the basis for preventing high-fat diet-induced insulin resistance. Our findings further illustrate the essential role for PPARγ in the development of adipose tissues and suggest that a compensatory induction of hepatic PPARγ may stimulate an increase in glucose disposal by the liver.
Journal Article
Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum
by
Miyashita, Satoshi
,
Yamada, Mayumi
,
Masuyama, Norihisa
in
631/378/2571/2579
,
631/378/2632/1368
,
64/60
2014
In the cerebellum, all GABAergic neurons are generated from the Ptf1a-expressing ventricular zone (Ptf1a domain). However, the machinery to produce different types of GABAergic neurons remains elusive. Here we show temporal regulation of distinct GABAergic neuron progenitors in the cerebellum. Within the Ptf1a domain at early stages, we find two subpopulations; dorsally and ventrally located progenitors that express Olig2 and Gsx1, respectively. Lineage tracing reveals the former are exclusively Purkinje cell progenitors (PCPs) and the latter Pax2-positive interneuron progenitors (PIPs). As development proceeds, PCPs gradually become PIPs starting from ventral to dorsal. In gain- and loss-of-function mutants for
Gsx1
and
Olig1/2
, we observe abnormal transitioning from PCPs to PIPs at inappropriate developmental stages. Our findings suggest that the temporal identity transition of cerebellar GABAergic neuron progenitors from PCPs to PIPs is negatively regulated by Olig2 and positively by Gsx1, and contributes to understanding temporal control of neuronal progenitor identities.
GABAergic neuron progenitors in the cerebellum give rise to Purkinje cells and GABAergic interneurons. Here the authors show that the transcription factors Olig2 and Gsx1 regulate an identity transition from Purkinje cell progenitors to interneuron progenitors during mouse development.
Journal Article
Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots
by
Osipovich, Anna B
,
McKinney, Hudson
,
Ho, Kung-Hsien
in
Animals
,
Beta cells
,
biphasic secretion
2021
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca
2+
influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca
2+
signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Journal Article