Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
154 result(s) for "Mai, Andreas"
Sort by:
Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review
Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed.
Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Comparative simulation analysis of photonic ultrasound sensors based on silicon waveguides
Pressure sensors based on photonic integrated circuits (PIC) offer the prospect of outstanding sensitivities, extreme miniaturization and have the potential for highly scalable production using CMOS compatible processing. PIC-based pressure sensors detect the change in optical properties, i.e. the intensity or phase of the optical carrier wave inside miniaturized waveguide structures. The detection of ultrasound is achieved by engineering the waveguide architecture such that a pressure causes a high change in the effective refractive index of the waveguide. A range of PIC-based pressure sensors have been reported, but a comparison of the sensitivity of the different approaches is not straightforward, since different pressure sensitive waveguide architectures as well as photonic layouts and measurement setups impact the performance. Additionally, the used sensitivity unit is not uniform throughout the different studies, further complicating a comparison. In this work, a detailed simulation study is carried out by finite element modeling of different pressure sensitive waveguide architectures for a consistent comparison. We analyze three different sensor architectures: (A) a free standing membrane located within a tiny air gap above the waveguide, (B) a waveguide located on top of a deflectable membrane as well as (C) a waveguide embedded inside a pressure-sensitive polymer cladding. The mechanical response of the structures and the resulting changes in mode propagation, i.e. the change of the effective refractive index, are analyzed. The waveguide sensitivities in RIU/MPa for different waveguide types (strip, slot) and polarization states (TE, TM) are compared. The results reveal inherent limitations of the different waveguide designs and create a basis for the selection of suitable designs for further ultrasound sensor development. Possibilities for enhancing waveguide sensitivity are identified and discussed. Additionally, we have shown that the studied approaches are extensible to SiN waveguides.
Processing and Characterization of High-Density Fe-Silicide/Si Core–Shell Quantum Dots for Light Emission
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from superatom-like β–FeSi2–core/Si–shell quantum dots (QDs). The β–FeSi2–core/Si–shell QDs, with an areal density as high as ~1011 cm−2 were fabricated by self-aligned silicide process of Fe–silicide capped Si–QDs on ~3.0 nm SiO2/n–Si (100) substrates, followed by SiH4 exposure at 400 °C. From the room temperature photoluminescence characteristics, β–FeSi2 core/Si–shell QDs can be regarded as active elements in optical applications because they offer the advantages of photonic signal processing capabilities and can be combined with electronic logic control and data storage.
Vertical GeSn nanowire MOSFETs for CMOS beyond silicon
The continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 µS/µm by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively. Mingshan Liu and colleagues fabricate p- and n-channel vertical-type GeSn nanowire MOSFETs and their CMOS components down to 25 nm. The mobility in n-FETs increased 2.5-fold compared to a Ge reference device, a step toward extending Moore’s law beyond the silicon era.
Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts
In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.
Surface Plasmon Resonance Biosensors: A Comparative Review
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Optimization of technology processes for enhanced CMOS-integrated 1T-1R RRAM device performance
Implementing artificial synapses that emulate the synaptic behavior observed in the brain is one of the most critical requirements for neuromorphic computing. Resistive random-access memories (RRAM) have been proposed as a candidate for artificial synaptic devices. For this applicability, RRAM device performance depends on the technology used to fabricate the metal–insulator–metal (MIM) stack and the technology chosen for the selector device. To analyze these dependencies, the integrated RRAM devices in a 4k-bit array are studied on a 200 mm wafer scale in this work. The RRAM devices are integrated into two different CMOS transistor technologies of IHP, namely 250 nm and 130 nm and the devices are compared in terms of their pristine state current. The devices in 130 nm technology have shown lower number of high pristine state current devices per die in comparison to the 250 nm technology. For the 130 nm technology, the forming voltage is reduced due to the decrease of HfO 2 dielectric thickness from 8 nm to 5 nm. Additionally, 5% Al-doped 4 nm HfO 2 dielectric displayed a similar reduction in forming voltage and a lower variation in the values. Finally, the multi-level switching between the dielectric layers in 250 nm and 130 nm technologies are compared, where 130 nm showed a more significant number of conductance levels of seven compared to only four levels observed in 250 nm technology. Graphical abstract
3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.
Modulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers
The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I–V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.