Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Mairinger, Elena"
Sort by:
Impact of metallothionein-knockdown on cisplatin resistance in malignant pleural mesothelioma
by
Herold, Thomas
,
Hegedus, Balazs
,
Aigner, Clemens
in
631/67/1641
,
692/4028/67/1641
,
Antineoplastic Agents - pharmacology
2020
Malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor with dismal prognosis. Platinum-based chemotherapy is regularly used as part of multimodality therapy. The expression of metallothioneins (MT) has been identified as a reason for cisplatin resistance, which often leads to early therapy failure or relapse. Thus, knockdown of MT expression may improve response to cisplatin treatment. The MT gene- and protein expression of the MPM-cell lines MSTO-211H, NCI-H2052 and NCI-H2452 and the human fibroblast cell line MRC-5, as well as their sensitivity to cisplatin treatment have been evaluated. Knockdown of MT1A, 1B and 2A expression was induced by RNA interference. MT expression was measured using quantitative real-time PCR. An in vitro Assay based on enzyme activity was used to detect cell viability, necrosis and apoptosis before and after incubation with cisplatin. MT2A gene expression could be detected in all MPM cell lines, showing the highest expression in NCI-H2452 and NCI-H2052, whereas gene expression levels of MT1A and MT1B were low or absent. The immunohistochemically protein expression of MT-I/II reflect MT2A gene expression levels. Especially for MSTO-211H cell presenting low initial MT2A levels, a strong induction of MT2A expression could be observed during cisplatin treatment, indicating a cell line-specific and platin-dependent adaption mechanism. Additionally, a MT2A-dependent cellular evasion of apoptosis during cisplatin could be observed, leading to three different MT based phenotypes. MSTO-211H cells showed lower apoptosis rates at an increased expression level of MT2A after cisplatin treatment (from sixfold to fourfold). NCI-H2052 cells showed no changes in MT2A expression, while apoptosis rate is the highest (8–12-fold). NCI-H2452 cells showed neither changes in alteration rate of MT2A expression nor changes in apoptosis rates, indicating an MT2A-independent resistance mechanism. Knockdown of MT2A expression levels resulted in significantly induced apoptotic rates during cisplatin treatment with strongest induction of apoptosis in each of the MPM cell lines, but in different markedness. A therapeutic meaningful effect of MT2A knockdown and subsequent cisplatin treatment could be observed in MSTO-211H cells. The present study showed MT2A to be part of the underlying mechanism of cisplatin resistance in MPM. Especially in MSTO-211H cells we could demonstrate major effects by knockdown of MT2A expression, verifying our hypothesis of an MT driven resistance mechanism. We could prove the inhibition of MT2A as a powerful tool to boost response rates to cisplatin-based therapy in vitro. These data carry the potential to enhance the clinical outcome and management of MPM in the future.
Journal Article
Digital gene expression analysis of NSCLC-patients reveals strong immune pressure, resulting in an immune escape under immunotherapy
2022
Background
Immune checkpoint inhibitors (ICIs) are currently one of the most promising therapy options in the field of oncology. Although the first pivotal ICI trial results were published in 2011, few biomarkers exist to predict their therapy outcome. PD-L1 expression and tumor mutational burden (TMB) were proven to be sometimes-unreliable biomarkers. We have previously suggested the analysis of processing escapes, a qualitative measurement of epitope structure alterations under immune system pressure, to provide predictive information on ICI response. Here, we sought to further validate this approach and characterize interactions with different forms of immune pressure.
Methods
We identified a cohort consisting of 48 patients with advanced non-small cell lung cancer (NSCLC) treated with nivolumab as ICI monotherapy. Tumor samples were subjected to targeted amplicon-based sequencing using a panel of 22 cancer-associated genes covering 98 mutational hotspots. Altered antigen processing was predicted by NetChop, and MHC binding verified by NetMHC. The NanoString nCounter® platform was utilized to provide gene expression data of 770 immune-related genes. Patient data from 408 patients with NSCLC were retrieved from The Cancer Genome Atlas (TCGA) as a validation cohort.
Results
The two immune escape mechanisms of PD-L1 expression (TPS score) (
n
= 18) and presence of altered antigen processing (
n
= 10) are mutually non-exclusive and can occur in the same patient (
n
= 6). Both mechanisms have exclusive influence on different genes and pathways, according to differential gene expression analysis and gene set enrichment analysis, respectively. Interestingly, gene expression patterns associated with altered processing were enriched in T cell and NK cell immune activity. Though both mechanisms influence different genes, they are similarly linked to increased immune activity.
Conclusion
Pressure from the immune system will lay the foundations for escape mechanisms, leading to acquisition of resistance under therapy. Both PD-L1 expression and altered antigen processing are induced similarly by pronounced immunoactivity but in different context. The present data help to deepen our understanding of the underlying mechanisms behind those immune escapes.
Journal Article
Gene expression profiling of homologous recombination repair pathway indicates susceptibility for olaparib treatment in malignant pleural mesothelioma in vitro
by
Kollmeier, Jens
,
Mairinger, Thomas
,
Herold, Thomas
in
Acid Anhydride Hydrolases
,
Antineoplastic Agents - pharmacology
,
Apoptosis - drug effects
2019
Background
Malignant pleural mesothelioma (MPM) is a tumour arising from pleural cavities with poor prognosis. Multimodality treatment with pemetrexed combined with cisplatin shows unsatisfying response-rates of 40%. The reasons for the rather poor efficacy of chemotherapeutic treatment are largely unknown. However, it is conceivable that DNA repair mechanisms lead to an impaired therapy response. We hypothesize a major role of homologous recombination (HR) for genome stability and survival of this tumour. Therefore, we analysed genes compiled under the term “BRCAness”. An inhibition of this pathway with olaparib might abrogate this effect and induce apoptosis.
Methods
We investigated the response of three MPM cell lines and lung fibroblasts serving as a control to treatment with pemetrexed, cisplatin and olaparib. Furthermore, we aimed to find possible correlations between response and gene expression patterns associated with BRCAness phenotype. Therefore, 91 clinical MPM samples were digitally screened for gene expression patterns of HR members.
Results
A BRCAness-dependent increase of apoptosis and senescence during olaparib-based treatment of BRCA-associated-protein 1 (
BAP1
)-mutated cell lines was observed. The gene expression pattern identified could be found in approx. 10% of patient samples. Against this background, patients could be grouped according to their defects in the HR system. Gene expression levels of Aurora Kinase A (
AURKA
),
RAD50
as well as DNA damage-binding protein 2 (
DDB2
) could be identified as prognostic markers in MPM.
Conclusions
Defects in HR compiled under the term BRCAness are a common event in MPM. The present data can lead to a better understanding of the underlaying cellular mechanisms and leave the door wide open for new therapeutic approaches for this severe disease with infaust prognosis. Response to
Poly (ADP-ribose)-Polymerase
(
PARP
)-Inhibition could be demonstrated in the
BAP1
-mutated NCI-H2452 cells, especially when combined with cisplatin. Thus, this combination therapy might be effective for up to 2/3 of patients, promising to enhance patients’ clinical management and outcome.
Journal Article
Processing Escape Mechanisms Through Altered Proteasomal Cleavage of Epitopes Affect Immune Response in Pulmonary Neuroendocrine Tumors
2018
Background:
Immunotherapy, especially immune checkpoint inhibition, is one of the most sophisticated approaches in cancer therapy. Immune checkpoint inhibition has already been successfully applied for treatment of non-small cell lung cancer and various other entities. Unfortunately, 60% of the cases show signs of therapy resistance. Additionally, a proportion of cases shows initial insensitivity to immune checkpoint inhibition. We consider a novel escape mechanism in association with deficient proteasomal epitope processing to be one prominent reason for initial insensitivity and therapy resistance. Therefore, we aim to identify mutations in association with these so-called processing escapes, in a highly diverse collective of pulmonary neuroendocrine lung tumors.
Materials and Methods:
Seventy representative tumor specimens of pulmonary neuroendocrine lung tumors were analyzed retrospectively via immunohistochemical detection of CD4, CD8, CD68, and CD20 as well as programmed cell death protein 1 and programmed cell death 1 ligand 1 for tumor immune infiltration and composition. Afterward, samples were screened for alterations in 48 genes, including 221 known mutational hotspots by massive parallel sequencing using the Illumina TruSeq Amplicon-Cancer Panel. For prediction of proteasomal cleavage probabilities, an R implementation of the machine learning tool NetChop 3.1 was utilized.
Results:
Immune cell infiltration of different compositions could be found in the majority of tumors. Deficient epitope processing was revealed to be a common event in those with steady distribution across all different subtypes. Despite immune infiltration, no significant antitumor response could be detected.
Conclusion:
Since it is widely acknowledged that tumors need to avoid the immune system to ensure their survival, processing escapes should already be present during primary tumor development. In line, processing escapes can be found in all tumors, regardless of subtype and mutational burden. Furthermore, there is solid evidence that processing escapes have a negative impact on the antitumor activity of tumor infiltrating immune cells.
Journal Article
One Third of Malignant Pleural Mesothelioma Shows High Immunohistochemical Expression of MSLN or CXCR4 Which Indicates Potent Candidates for Endo-Radiotherapy
by
Kollmeier, Jens
,
Herrmann, Ken
,
Mairinger, Thomas
in
Cancer
,
Cancer therapies
,
Care and treatment
2023
Malignant pleural mesothelioma (MPM) is a mainly asbestos-related tumour associated with a very poor prognosis. Therapeutic approaches include multimodal therapy and chemotherapeutics, with cisplatin being the drug of choice, but response rates of only up to 14% indicate very poor outcomes. Effective treatment options are lacking. Besides the diagnostic usage of radioligands in positron emission tomography (PET)/computed tomography (CT), the endo-radioligand therapy with Lu177 has been proven as a powerful tool in cancer therapy. Mesothelin (MSLN) and C-XC chemokine receptor 4 (CXCR4) are membrane-bound proteins, expressed in certain cancers, and thus are promising targets for endo-radiotherapy. A significant portion of high MSLN- or CXCR4-expressing tumors within the MPM may open the field for this sophisticated treatment approach in the near future. Formalin-fixed, paraffin-embedded (FFPE) tumour specimens from 105 patients suffering from MPM and treated at the Lung Cancer Centre of Essen and at the Helios Klinikum Emil von Behring Berlin were screened. The tumour samples were arranged in tissue microarrays. We immunohistochemically stained the tumour samples against MSLN and CXCR4. The protein expressions of the stainings were scored by a pathologist by using a semiquantitative method. The data obtained were correlated with the clinical outcome. Overall, 77.1% of the analysed tumours showed CXCR4 protein expression (25.7% of them at high expression level (Score 3)). 48.6% of all samples showed an overall strong staining (Score ≥ 2), 59% of the investigated tumours showed MSLN protein expression (10.5% of them at high expression (Score 3)), and 36.2% of all samples showed an overall strong staining (Score ≥ 2). Our results show significant tissue expression levels, for both CXCR4 and MSLN protein, in a major portion of clinical MPM samples. One-third of patients showed outstanding immunoexpression of at least one of these markers, making them interesting candidates for radioligand-based PET/CT diagnostics and follow-up and furthermore may profit from endo-radiotherapy.
Journal Article
Cancer-Associated Fibroblasts Influence Survival in Pleural Mesothelioma: Digital Gene Expression Analysis and Supervised Machine Learning Model
2023
The exact mechanism of desmoplastic stromal reaction (DSR) formation is still unclear. The interaction between cancer cells and cancer-associated fibroblasts (CAFs) has an important role in tumor progression, while stromal changes are a poor prognostic factor in pleural mesothelioma (PM). We aimed to assess the impact of CAFs paracrine signaling within the tumor microenvironment and the DSR presence on survival, in a cohort of 77 PM patients. DSR formation was evaluated morphologically and by immunohistochemistry for Fibroblast activation protein alpha (FAP). Digital gene expression was analyzed using a custom-designed CodeSet (NanoString). Decision-tree-based analysis using the “conditional inference tree” (CIT) machine learning algorithm was performed on the obtained results. A significant association between FAP gene expression levels and the appearance of DSR was found (p = 0.025). DSR-high samples demonstrated a statistically significant prolonged median survival time. The elevated expression of MYT1, KDR, PIK3R1, PIK3R4, and SOS1 was associated with shortened OS, whereas the upregulation of VEGFC, FAP, and CDK4 was associated with prolonged OS. CIT revealed a three-tier system based on FAP, NF1, and RPTOR expressions. We could outline the prognostic value of CAFs-induced PI3K signaling pathway activation together with FAP-dependent CDK4 mediated cell cycle progression in PM, where prognostic and predictive biomarkers are urgently needed to introduce new therapeutic strategies.
Journal Article
Cancer-Associated Fibroblasts Regulate Kinase Activity in Mesothelioma Cell Lines via Paracrine Signaling and Thereby Dictate Cell Faith and Behavior
by
Brcic, Luka
,
Schmid, Kurt Werner
,
Uebner, Hendrik
in
Apoptosis
,
Cancer
,
Cancer-Associated Fibroblasts - metabolism
2022
Background: Malignant pleural mesothelioma (MPM) has an infaust prognosis due to resistance to systemic treatment with platin-analoga. MPM cells modulate the immune response to their benefit. They release proinflammatory cytokines, such as TGF-ß, awakening resting fibrocytes that switch their phenotype into activated fibroblasts. Signaling interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an integral part in tumor progression. This study aimed to investigate the role CAFs play in MPM progression, analyzing the impact this complex, symbiotic interaction has on kinase-related cell signaling in vitro. Methods: We simulated paracrine signaling in vitro by treating MPM cell lines with conditioned medium (CM) from fibroblasts (FB) and vice versa. NCI-H2052, MSTO-211H, and NCI-H2452 cell lines representing the three mayor MPM subtypes, while embryonal myofibroblast cell lines, IMR-90 and MRC-5, provide a CAFs-like phenotype. Subsequently, differences in proliferation rates, migratory behavior, apoptosis, necrosis, and viability were used as covariates for data analysis. Kinase activity of treated samples and corresponding controls were then analyzed using the PamStation12 platform (PamGene); Results: Treatment with myofibroblast-derived CM revealed significant changes in phosphorylation patterns in MPM cell lines. The observed effect differs strongly between the analyzed MPM cell lines and depends on the origin of CM. Overall, a much stronger effect was observed using CM derived from IMR-90 than MRC-5. The phosphorylation changes mainly affected the MAPK signaling pathway.; Conclusions: The factors secreted by myofibroblasts in fibroblasts CM significantly influence the phosphorylation of kinases, mainly affecting the MAPK signaling cascade in tested MPM cell lines. Our in vitro results indicate promising therapeutic effects by the use of MEK or ERK inhibitors and might have synergistic effects in combination with cisplatin-based treatment, improving clinical outcomes for MPM patients.
Journal Article
The Impact of Cancer-Associated Fibroblasts on the Biology and Progression of Colorectal Carcinomas
by
Baba, Hideo Andreas
,
Henrich, Larissa Maria
,
Greimelmaier, Kristina
in
1-Phosphatidylinositol 3-kinase
,
Adenoma
,
Adenoma - metabolism
2024
(1) Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Cancer-associated fibroblasts (CAFs) are major components of CRC’s tumour microenvironment (TME), but their biological background and interplay with the TME remain poorly understood. This study investigates CAF biology and its impact on CRC progression. (2) The cohort comprises 155 cases, including CRC, with diverse localizations, adenomas, inflammations, and controls. Digital gene expression analysis examines genes associated with signalling pathways (MAPK, PI3K/Akt, TGF-β, WNT, p53), while next-generation sequencing (NGS) determines CRC mutational profiles. Immunohistochemical FAP scoring assesses CAF density and activity. (3) FAP expression is found in 81 of 150 samples, prevalent in CRC (98.4%), adenomas (27.5%), and inflammatory disease (38.9%). Several key genes show significant associations with FAP-positive fibroblasts. Gene set enrichment analysis (GSEA) highlights PI3K and MAPK pathway enrichment alongside the activation of immune response pathways like natural killer (NK)-cell-mediated cytotoxicity via CAFs. (4) The findings suggest an interplay between CAFs and cancer cells, influencing growth, invasiveness, angiogenesis, and immunogenicity. Notably, TGF-β, CDKs, and the Wnt pathway are affected. In conclusion, CAFs play a significant role in CRC and impact the TME throughout development.
Journal Article
Prognostic significance of PD-1 and PD-L1 positive tumor-infiltrating immune cells in ovarian carcinoma
2019
INTRODUCTIONOvarian carcinoma is associated with the highest mortality of all gynecologic malignancies. Even after optimal treatment, prognosis remains poor. There is no established biomarker to predict individual patient outcome.
OBJECTIVETo evaluate the prognostic significance of PD-1 and PD-L1 expression in tumor tissues from patients with ovarian cancer.
METHODSTissue micro-arrays were prepared from routinely formalin-fixed, paraffin-embedded tumor tissues and examined immunohistochemically for the expression of programed cell death protein 1 (PD-1) and one of its ligands (PD-L1) on epithelial tumor cells, as well as on tumor- and stroma-infiltrating immune cells.
RESULTSThe presence of PD-1 positive tumor-infiltrating immune cells was significantly associated with prolonged overall survival. PD-1 and PD-L1 positive tumor-infiltrating immune cells were associated with the presence of lymph node metastases and higher tumor grade. Interestingly, the amount of PD-1/PD-L1 positive tumor- and stroma-infiltrating immune cells independent of PD-1 or PD-L1 expression did not show any significant correlation with prognostic variables.
CONCLUSIONOur results highlight the prognostic value of PD-1 and PD-L1 positive tumor-infiltrating immune cells in ovarian carcinoma. Their association with favorable prognosis supports the hypothesis that the expression of PD-1 and PD-L1 on tumor-infiltrating immune cells represents a strong immune response.
Journal Article
Digital Gene Expression Analysis of Epithelioid and Sarcomatoid Mesothelioma Reveals Differences in Immunogenicity
by
Kollmeier, Jens
,
Brcic, Luka
,
Mairinger, Thomas
in
Antigen presentation
,
Antigen processing
,
Asbestos
2021
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with asbestos exposure. Median survival ranges from 14 to 20 months after initial diagnosis. As of November 2020, the FDA approved a combination of immune checkpoint inhibitors after promising intermediate results. Nonetheless, responses remain unsatisfying. Adequate patient stratification to improve response rates is still lacking. This retrospective study analyzed formalin fixed paraffin embedded specimens from a cohort of 22 MPM. Twelve of those samples showed sarcomatoid, ten epithelioid differentiation. Complete follow-up, including radiological assessment of response by modRECIST and time to death, was available with reported deaths of all patients. RNA of all samples was isolated and subjected to digital gene expression pattern analysis. Our study revealed a notable difference between epithelioid and sarcomatoid mesothelioma, showing differential gene expression for 304/698 expressed genes. Whereas antigen processing and presentation to resident cytotoxic T cells as well as phagocytosis is highly affected in sarcomatoid mesothelioma, cell–cell interaction via cytokines seems to be of greater importance in epithelioid cases. Our work reveals the specific role of the immune system within the different histologic subtypes of MPM, providing a more detailed background of their immunogenic potential. This is of great interest regarding therapeutic strategies including immunotherapy in mesothelioma.
Journal Article