Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Malkani, Roneil G"
Sort by:
Light exposure during sleep impairs cardiometabolic function
by
Zee, Phyllis C.
,
Mason, Ivy C.
,
Malkani, Roneil G.
in
Adult
,
Biological Sciences
,
Cardiovascular Diseases - etiology
2022
This study tested the hypothesis that acute exposure to light during nighttime sleep adversely affects next-morning glucose homeostasis and whether this effect occurs via reduced sleep quality, melatonin suppression, or sympathetic nervous system (SNS) activation during sleep. A total of 20 young adults participated in this parallel-group study design. The room light condition (n = 10) included one night of sleep in dim light (<3 lx) followed by one night of sleep with overhead room lighting (100 lx). The dim light condition (n = 10) included two consecutive nights of sleep in dim light. Measures of insulin resistance (morning homeostatic model assessment of insulin resistance, 30-min insulin area under the curve [AUC] from a 2-h oral glucose tolerance test) were higher in the room light versus dim light condition. Melatonin levels were similar in both conditions. In the room light condition, participants spent proportionately more time in stage N2 and less in slow wave and rapid eye movement sleep. Heart rate was higher and heart rate variability lower (higher sympathovagal balance) during sleep in the room light versus the dim light condition. Importantly, the higher sympathovagal balance during sleep was associated with higher 30-min insulin AUC, consistent with increased insulin resistance the following morning. These results demonstrate that a single night of exposure to room light during sleep can impair glucose homeostasis, potentially via increased SNS activation. Attention to avoiding exposure to light at night during sleep may be beneficial for cardiometabolic health.
Journal Article
Obstructive Sleep Apnea and Risk of COVID-19 Infection, Hospitalization and Respiratory Failure
2021
PurposeTo study the relationship between OSA and risk of COVID-19 infection and disease severity, identified by the need for hospitalization and progression to respiratory failure.MethodsWe queried the electronic medical record system for an integrated health system of 10 hospitals in the Chicago metropolitan area to identify cases of COVID-19. Comorbidities and outcomes were ascertained by ICD-10-CM coding and medical record data. We evaluated the risk for COVID-19 diagnosis, hospitalization, and respiratory failure associated with OSA by univariate tests and logistic regression, adjusting for diabetes, hypertension, and BMI to account for potential confounding in the association between OSA, COVID-19 hospitalization, and progression to respiratory failure.ResultsWe identified 9405 COVID-19 infections, among which 3185 (34%) were hospitalized and 1779 (19%) were diagnosed with respiratory failure. OSA was more prevalent among patients requiring hospitalization than those who did not (15.3% versus 3.4%, p < 0.0001; OR 5.20, 95% CI (4.43, 6.12)), and among those who progressed to respiratory failure (19.4% versus 4.5%, p < 0.0001; OR 5.16, 95% CI (4.41, 6.03)). After adjustment for diabetes, hypertension, and BMI, OSA was associated with increased risk for hospitalization (OR 1.65; 95% CI (1.36, 2.02)) and respiratory failure (OR 1.98; 95% CI (1.65, 2.37)).ConclusionsPatients with OSA experienced approximately 8-fold greater risk for COVID-19 infection compared to a similar age population receiving care in a large, racially, and socioeconomically diverse healthcare system. Among patients with COVID-19 infection, OSA was associated with increased risk of hospitalization and approximately double the risk of developing respiratory failure.
Journal Article
Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults
by
Santostasi, Giovanni
,
Zee, Phyllis C.
,
Paller, Ken A.
in
Acoustics
,
Aging
,
Associative learning
2017
Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60-84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (\"ON interval\") was followed by a pause of approximately equal length (\"OFF interval\"). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity.
Journal Article
Workshop report. Circadian rhythm sleep–wake disorders: gaps and opportunities
by
Burgess, Helen J
,
Kristo, David A
,
Klerman, Elizabeth B
in
Care and treatment
,
Circadian Rhythm
,
Circadian Rhythms and Circadian Disorders
2021
Abstract
This White Paper presents the results from a workshop cosponsored by the Sleep Research Society (SRS) and the Society for Research on Biological Rhythms (SRBR) whose goals were to bring together sleep clinicians and sleep and circadian rhythm researchers to identify existing gaps in diagnosis and treatment and areas of high-priority research in circadian rhythm sleep–wake disorders (CRSWD). CRSWD are a distinct class of sleep disorders caused by alterations of the circadian time-keeping system, its entrainment mechanisms, or a misalignment of the endogenous circadian rhythm and the external environment. In these disorders, the timing of the primary sleep episode is either earlier or later than desired, irregular from day-to-day, and/or sleep occurs at the wrong circadian time. While there are incomplete and insufficient prevalence data, CRSWD likely affect at least 800,000 and perhaps as many as 3 million individuals in the United States, and if Shift Work Disorder and Jet Lag are included, then many millions more are impacted. The SRS Advocacy Taskforce has identified CRSWD as a class of sleep disorders for which additional high-quality research could have a significant impact to improve patient care. Participants were selected for their expertise and were assigned to one of three working groups: Phase Disorders, Entrainment Disorders, and Other. Each working group presented a summary of the current state of the science for their specific CRSWD area, followed by discussion from all participants. The outcome of those presentations and discussions are presented here.
Journal Article
Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults
2016
Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.
Journal Article
Acoustic enhancement of sleep slow oscillations in mild cognitive impairment
2019
Objective Slow‐wave activity (SWA) during sleep is reduced in people with amnestic mild cognitive impairment (aMCI) and is related to sleep‐dependent memory consolidation. Acoustic stimulation of slow oscillations has proven effective in enhancing SWA and memory in younger and older adults. In this study we aimed to determine whether acoustic stimulation during sleep boosts SWA and improves memory performance in people with aMCI. Methods Nine adults with aMCI (72 ± 8.7 years) completed one night of acoustic stimulation (stim) and one night of sham stimulation (sham) in a blinded, randomized crossover study. Acoustic stimuli were delivered phase‐locked to the upstate of the endogenous sleep slow‐waves. Participants completed a declarative recall task with 44 word‐pairs before and after sleep. Results During intervals of acoustic stimulation, SWA increased by >10% over sham intervals (P < 0.01), but memory recall increased in only five of the nine patients. The increase in SWA with stimulation was associated with improved morning word recall (r = 0.78, P = 0.012). Interpretation Acoustic stimulation delivered during slow‐wave sleep over one night was effective for enhancing SWA in individuals with aMCI. Given established relationships between SWA and memory, a larger or more prolonged enhancement may be needed to consistently improve memory in aMCI.
Journal Article
Autonomic dysregulation and sleep homeostasis in insomnia
by
Papalambros, Nelly A
,
Malkani, Roneil G
,
Reid, Kathryn J
in
Analysis
,
Comorbidity
,
Corticosteroids
2021
Abstract
Study Objectives
Insomnia is common in older adults, and is associated with poor health, including cognitive impairment and cardio-metabolic disease. Although the mechanisms linking insomnia with these comorbidities remain unclear, age-related changes in sleep and autonomic nervous system (ANS) regulation might represent a shared mechanistic pathway. In this study, we assessed the relationship between ANS activity with indices of objective and subjective sleep quality in older adults with insomnia.
Methods
Forty-three adults with chronic insomnia and 16 age-matched healthy sleeper controls were studied. Subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), objective sleep quality by electroencephalogram spectral components derived from polysomnography, and ANS activity by measuring 24-h plasma cortisol and norepinephrine (NE).
Results
Sleep cycle analysis displayed lower slow oscillatory (SO: 0.5–1.25 Hz) activity in the first cycle in insomnia compared to controls. In insomnia, 24-h cortisol levels were higher and 24-h NE levels were lower than controls. In controls, but not in insomnia, there was a significant interaction between NE level during wake and SO activity levels across the sleep cycles, such that in controls but not in insomnia, NE level during wake was positively associated with the amount of SO activity in the first cycle. In insomnia, lower 24-h NE level and SO activity in the first sleep cycle were associated with poorer subjective sleep quality.
Conclusion
Dysregulation of autonomic activity may be an underlying mechanism that links objective and subjective measures of sleep quality in older adults with insomnia, and potentially contribute to adverse health outcomes.
Journal Article
Strengthening sleep–autonomic interaction via acoustic enhancement of slow oscillations
by
Papalambros, Nelly A
,
Malkani, Roneil G
,
Reid, Kathryn J
in
Acoustic Stimulation - methods
,
Acoustics
,
Adolescent
2019
Slow-wave sleep (SWS) is important for overall health since it affects many physiological processes including cardio-metabolic function. Sleep and autonomic nervous system (ANS) activity are closely coupled at anatomical and physiological levels. Sleep-related changes in autonomic function are likely the main pathway through which SWS affects many systems within the body. There are characteristic changes in ANS activity across sleep stages. Notably, in non-rapid eye-movement sleep, the progression into SWS is characterized by increased parasympathetic activity, an important measure of cardiovascular health. Experimental manipulations that enhance slow-wave activity (SWA, 0.5–4 Hz) can improve sleep-mediated memory and immune function. However, effects of SWA enhancement on autonomic regulation have not been investigated. Here, we employed an adaptive algorithm to deliver 50 ms sounds phase-locked to slow-waves, with regular pauses in stimulation (~5 s ON/~5 s OFF), in healthy young adults. We sought to determine whether acoustic enhancement of SWA altered parasympathetic activity during SWS assessed with heart rate variability (HRV), and evening-to-morning changes in HRV, plasma cortisol, and blood pressure. Stimulation, compared with a sham condition, increased SWA during ON versus OFF intervals. This ON/OFF SWA enhancement was associated with a reduction in evening-to-morning change of cortisol levels and indices of sympathetic activity. Furthermore, the enhancement of SWA in ON intervals during sleep cycles 2–3 was accompanied by an increase in parasympathetic activity (high-frequency, HRV). Together these findings suggest that acoustic enhancement of SWA has a positive effect on autonomic function in sleep. Approaches to strengthen brain–heart interaction during sleep could have important implications for cardiovascular health.
Journal Article
A randomized controlled trial of CBT-I and PAP for obstructive sleep apnea and comorbid insomnia: main outcomes from the MATRICS study
by
Malkani, Roneil G
,
Ong, Jason C
,
Turner, Arlener D
in
Adult
,
Behavioral health care
,
Care and treatment
2020
Abstract
Study Objectives
To investigate treatment models using cognitive behavioral therapy for insomnia (CBT-I) and positive airway pressure (PAP) for people with obstructive sleep apnea (OSA) and comorbid insomnia.
Methods
121 adults with OSA and comorbid insomnia were randomized to receive CBT-I followed by PAP, CBT-I concurrent with PAP, or PAP only. PAP was delivered following standard clinical procedures for in-lab titration and home setup and CBT-I was delivered in four individual sessions. The primary outcome measure was PAP adherence across the first 90 days, with regular PAP use (≥4 h on ≥70% of nights during a 30-day period) serving as the clinical endpoint. The secondary outcome measures were the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) with good sleeper (PSQI <5), remission (ISI <8), and response (ISI reduction from baseline >7) serving as the clinical endpoints.
Results
No significant differences were found between the concomitant treatment arms and PAP only on PAP adherence measures, including the percentage of participants who met the clinical endpoint. Compared to PAP alone, the concomitant treatment arms reported a significantly greater reduction from baseline on the ISI (p = .0009) and had a greater percentage of participants who were good sleepers (p = .044) and remitters (p = .008). No significant differences were found between the sequential and concurrent treatment models on any outcome measure.
Conclusions
The findings from this study indicate that combining CBT-I with PAP is superior to PAP alone on insomnia outcomes but does not significantly improve adherence to PAP.
Journal Article
REM Sleep Behavior Disorder as a Pathway to Dementia: If, When, How, What, and Why Should Physicians Disclose the Diagnosis and Risk for Dementia
2021
Purpose of Review
People with isolated REM (rapid eye movement) sleep behavior disorder (iRBD) have a high lifetime risk of developing a neurodegenerative disease, including dementia, but disclosure of this risk remains controversial. Herein, we summarize this controversy and provide guidance on disclosure.
Recent Findings
Neurodegeneration risk disclosure in iRBD is controversial because of a long latency to disease onset and a lack of preventative strategies. Balancing the relevant ethical principles of beneficence, nonmaleficence, and autonomy is challenging. Although there are few data on disclosure in iRBD, evidence from discussing risk in other diseases with dementia provides some guidance.
Summary
We provide an approach to risk disclosure for patients with iRBD. Patients should be asked if they want to know about future risks. If so, disclosure should be patient centered, focusing on what might happen. Discussion should occur early to give patients time to prepare for the future and consider participating in research.
Journal Article