Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Mallick, Himel"
Sort by:
Multivariable association discovery in population-scale meta-omics studies
by
Zhang, Yancong
,
Weingart, George
,
Ma, Siyuan
in
Analysis
,
Biology and Life Sciences
,
Computational Biology
2021
It is challenging to associate features such as human health outcomes, diet, environmental conditions, or other metadata to microbial community measurements, due in part to their quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements. Here we introduce an optimized combination of novel and established methodology to assess multivariable association of microbial community features with complex metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses generalized linear and mixed models to accommodate a wide variety of modern epidemiological studies, including cross-sectional and longitudinal designs, as well as a variety of data types (e.g., counts and relative abundances) with or without covariates and repeated measurements. To construct this method, we conducted a large-scale evaluation of a broad range of scenarios under which straightforward identification of meta-omics associations can be challenging. These simulation studies reveal that MaAsLin 2’s linear model preserves statistical power in the presence of repeated measures and multiple covariates, while accounting for the nuances of meta-omics features and controlling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome (HMP2) project which, in addition to reproducing established results, revealed a unique, integrated landscape of inflammatory bowel diseases (IBD) across multiple time points and omics profiles.
Journal Article
Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
by
Winter, Harland S.
,
Avila-Pacheco, Julian
,
Clish, Clary B.
in
45/23
,
45/91
,
631/326/2565/2134
2019
Inflammatory bowel diseases, which include Crohn’s disease and ulcerative colitis, affect several million individuals worldwide. Crohn’s disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study’s infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi’omics Database (
http://ibdmdb.org
), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.
The Inflammatory Bowel Disease Multi’omics Database includes longitudinal data encompassing a multitude of analyses of stool, blood and biopsies of more than 100 individuals, and provides a comprehensive description of host and microbial activities in inflammatory bowel diseases.
Journal Article
Experimental design and quantitative analysis of microbial community multiomics
by
Huttenhower, Curtis
,
Mallick, Himel
,
Morgan, Xochitl C.
in
Animal Genetics and Genomics
,
Animals
,
bioactive compounds
2017
Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.
Journal Article
Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin
by
Nguyen, Long H.
,
Mallick, Himel
,
Schirmer, Melanie
in
Acinetobacter
,
Animal Genetics and Genomics
,
Batch effect
2022
Microbiome studies of inflammatory bowel diseases (IBD) have achieved a scale for meta-analysis of dysbioses among populations. To enable microbial community meta-analyses generally, we develop MMUPHin for normalization, statistical meta-analysis, and population structure discovery using microbial taxonomic and functional profiles. Applying it to ten IBD cohorts, we identify consistent associations, including novel taxa such as
Acinetobacter
and
Turicibacter
, and additional exposure and interaction effects. A single gradient of dysbiosis severity is favored over discrete types to summarize IBD microbiome population structure. These results provide a benchmark for characterization of IBD and a framework for meta-analysis of any microbial communities.
Journal Article
Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences
by
Mallick, Himel
,
Mclver, Lauren J.
,
Sirota-Madi, Alexandra
in
631/114/1305
,
631/114/2415
,
631/326/2565/2134
2019
Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this ‘predictive metabolomic’ approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
Obtaining metabolomic data from microbial communities can be costly and difficult, whereas many microbial community sequence datasets are already available. Here Mallick et al. describe a computational approach to predict metabolic features from microbial DNA sequencing information.
Journal Article
Global chemical effects of the microbiome include new bile-acid conjugations
2020
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
–
9
. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units
10
), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches
11
,
12
–
13
to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry
14
. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.
Metabolomics data from germ-free and specific-pathogen-free mice reveal effects of the microbiome on host chemistry, identifying conjugations of bile acids that are also enriched in patients with inflammatory bowel disease or cystic fibrosis.
Journal Article
A Bayesian method for detecting pairwise associations in compositional data
by
Huttenhower, Curtis
,
Schwager, Emma
,
Mallick, Himel
in
Algorithms
,
Bayes Theorem
,
Bayesian analysis
2017
Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats.
Journal Article
A statistical model for describing and simulating microbial community profiles
by
Lu, Yiren
,
Schwager, Emma
,
Maharjan, Sagun
in
Algorithms
,
Benchmarking
,
Biology and Life Sciences
2021
Many methods have been developed for statistical analysis of microbial community profiles, but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, non-independence, and compositionality) and of the associated underlying biology, it is difficult to compare or evaluate such methods within a single systematic framework. To address this challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a statistical model of microbial ecological population structure, which can be used to parameterize real-world microbial community profiles and to simulate new, realistic profiles of known structure for methods evaluation. Specifically, SparseDOSSA’s model captures marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional model components for absolute cell counts and the sequence read generation process, microbe-microbe, and microbe-environment interactions. Together, these allow fully known covariance structure between synthetic features (i.e. “taxa”) or between features and “phenotypes” to be simulated for method benchmarking. Here, we demonstrate SparseDOSSA’s performance for 1) accurately modeling human-associated microbial population profiles; 2) generating synthetic communities with controlled population and ecological structures; 3) spiking-in true positive synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end mouse microbiome feeding experiment. Together, these represent the most common analysis types in assessment of real microbial community environmental and epidemiological statistics, thus demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities and evaluating quantitative methods. An open-source implementation is available at http://huttenhower.sph.harvard.edu/sparsedossa2 .
Journal Article
Oronasopharyngeal suction versus wiping of the mouth and nose at birth: a randomised equivalency trial
by
Carlo, Waldemar A
,
Pruitt, Elizabeth P
,
Mills, Emily C
in
Airway management
,
Alabama
,
amniotic fluid
2013
Wiping of the mouth and nose at birth is an alternative method to oronasopharyngeal suction in delivery-room management of neonates, but whether these methods have equivalent effectiveness is unclear.
For this randomised equivalency trial, neonates delivered at 35 weeks' gestation or later at the University of Alabama at Birmingham Hospital, Birmingham, AL, USA, between October, 2010, and November, 2011, were eligible. Before birth, neonates were randomly assigned gentle wiping of the face, mouth (implemented by the paediatric or obstetric resident), and nose with a towel (wipe group) or suction with a bulb syringe of the mouth and nostrils (suction group). The primary outcome was the respiratory rate in the first 24 h after birth. We hypothesised that respiratory rates would differ by fewer than 4 breaths per min between groups. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01197807.
506 neonates born at a median of 39 weeks' gestation (IQR 38–40) were randomised. Three parents withdrew consent and 15 non-vigorous neonates with meconium-stained amniotic fluid were excluded. Among the 488 treated neonates, the mean respiratory rates in the first 24 h were 51 (SD 8) breaths per min in the wipe group and 50 (6) breaths per min in the suction group (difference of means 1 breath per min, 95% CI −2 to 0, p<0·001).
Wiping the nose and mouth has equivalent efficacy to routine use of oronasopharyngeal suction in neonates born at or beyond 35 weeks' gestation.
None.
Journal Article