Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Manangazira, Portia"
Sort by:
Highly Resistant Cholera Outbreak Strain in Zimbabwe
Whole genomes of 11 Vibrio cholerae O1 isolates from the 2018–2019 outbreak in Zimbabwe were sequenced to investigate the determinants of antimicrobial resistance and their phylogenetic relationships to 1200 global seventh-cholera-pandemic genomes.
Six rounds of annual praziquantel treatment during a national helminth control program significantly reduced schistosome infection and morbidity levels in a cohort of schoolchildren in Zimbabwe
Background The World Health Organization recommends that schistosomiasis be treated through Mass Drug Administration (MDA). In line with this recommendation, Zimbabwe commenced a national helminth control program in 2012 targeting schoolchildren throughout the country for 6 years. This study, part of a larger investigation of the impact of helminth treatment on the overall health of the children, determined the effect of annual praziquantel treatment on schistosome infection and morbidity in a cohort of children during Zimbabwe's 6-year national helminth control program. Methodology/Principal findings A school-based longitudinal study was carried out in 35 sentinel sites across Zimbabwe from September 2012 to November 2017. The sentinel sites were selected following a countrywide survey conducted in 280 primary schools. Schistosoma haematobium was diagnosed using the urine filtration technique. Schistosoma mansoni was diagnosed using both the Kato-Katz and formol-ether concentration techniques. S. haematobium morbidity was determined through detection of macro and microhaematuria. A cohort of children aged 6-15 years old was surveyed annually before MDA and 6 weeks post treatment. Maximum treatment coverage reached 90% over the 6 rounds of MDA. At baseline S. haematobium infection prevalence and intensity were 31.7% (95% CI = 31.1-32.2) and 28.75 eggs/10ml urine (SEM = 0.81) respectively, while S. mansoni prevalence and intensity were 4.6% (95% CI = 4.4-4.8) and 0.28 eggs/25mg (SEM = 0.02). Prior to the 6.sup.th round of MDA, S. haematobium infection prevalence had reduced to 1.56% (p<0.001) and infection intensity to 0.07 (SEM 0.02). Six weeks later after the 6.sup.th MDA, both were 0. Similarly the prevalence of S. haematobium morbidity as indicated by haematuria also fell significantly from 32.3% (95% CI = 29.9-34.6) to 0% (p< 0.0001) prior to the final MDA. For S.mansoni, both prevalence and intensity had decreased to 0 prior to the 6.sup.th MDA. After 6 rounds of annual MDA, prevalence and intensity of both schistosome species decreased significantly to 0% (p< 0.0001). Conclusion Zimbabwe's helminth control program significantly reduced schistosome infection intensity and prevalence and urogenital schistosomiasis morbidity prevalence in a cohort of school-aged children, moving the schistosome prevalence in the children from moderate to low by WHO classification. These findings will inform the design of the country's next stage interventions for helminth control and eventual elimination.
Comprehensive occupational health services for healthcare workers in Zimbabwe during the SARS-CoV-2 pandemic
Healthcare workers are disproportionately affected by COVID-19. In low- and middle- income countries, they may be particularly impacted by underfunded health systems, lack of personal protective equipment, challenging working conditions and barriers in accessing personal healthcare. In this cross-sectional study, occupational health screening was implemented at the largest public sector medical centre in Harare, Zimbabwe, during the \"first wave\" of the country's COVID-19 epidemic. Clients were voluntarily screened for symptoms of COVID-19, and if present, offered a SARS-CoV-2 nucleic acid detection assay. In addition, measurement of height, weight, blood pressure and HbA1c, HIV and TB testing, and mental health screening using the Shona Symptom Questionnaire (SSQ-14) were offered. An interviewer-administered questionnaire ascertained client knowledge and experiences related to COVID-19. Between 27th July and 30th October 2020, 951 healthcare workers accessed the service; 210 (22%) were tested for SARS-CoV-2, of whom 12 (5.7%) tested positive. Clients reported high levels of concern about COVID-19 which declined with time, and faced barriers including lack of resources for infection prevention and control. There was a high prevalence of largely undiagnosed non-communicable disease: 61% were overweight or obese, 34% had a blood pressure of 140/90mmHg or above, 10% had an HbA1c diagnostic of diabetes, and 7% had an SSQ-14 score consistent with a common mental disorder. Overall 8% were HIV-positive, with 97% previously diagnosed and on treatment. Cases of SARS-CoV-2 in healthcare workers mirrored the national epidemic curve. Implementation of comprehensive occupational health services during a pandemic was feasible, and uptake was high. Other comorbidities were highly prevalent, which may be risk factors for severe COVID-19 but are also important independent causes of morbidity and mortality. Healthcare workers are critical to combatting COVID-19; it is essential to support their physical and psychological wellbeing during the pandemic and beyond.
Distribution of Schistosomiasis and Soil Transmitted Helminthiasis in Zimbabwe: Towards a National Plan of Action for Control and Elimination
Schistosomiasis and STH are among the list of neglected tropical diseases considered for control by the WHO. Although both diseases are endemic in Zimbabwe, no nationwide control interventions have been implemented. For this reason in 2009 the Zimbabwe Ministry of Health and Child Care included the two diseases in the 2009-2013 National Health Strategy highlighting the importance of understanding the distribution and burden of the diseases as a prerequisite for elimination interventions. It is against this background that a national survey was conducted. A countrywide cross-sectional survey was carried out in 280 primary schools in 68 districts between September 2010 and August 2011. Schistosoma haematobium was diagnosed using the urine filtration technique. Schistosoma mansoni and STH (hookworms, Trichuris trichiura, Ascaris lumbricoides) were diagnosed using both the Kato Katz and formol ether concentration techniques. Schistosomiasis was more prevalent country-wide (22.7%) than STH (5.5%). The prevalence of S. haematobium was 18.0% while that of S. mansoni was 7.2%. Hookworms were the most common STH with a prevalence of 3.2% followed by A. lumbricoides and T. trichiura with prevalence of 2.5% and 0.1%, respectively. The prevalence of heavy infection intensity as defined by WHO for any schistosome species was 5.8% (range 0%-18.3% in districts). Only light to moderate infection intensities were observed for STH species. The distribution of schistosomiasis and STH varied significantly between provinces, districts and schools (p<0.001). Overall, the prevalence of co-infection with schistosomiasis and STH was 1.5%. The actual co-endemicity of schistosomiasis and STH was observed in 43 (63.2%) of the 68 districts screened. This study provided comprehensive baseline data on the distribution of schistosomiasis and STH that formed the basis for initiating a national control and elimination programme for these two neglected tropical diseases in Zimbabwe.
Accuracy of different diagnostic techniques for Schistosoma haematobium to estimate treatment needs in Zimbabwe: Application of a hierarchical Bayesian egg count model
Treatment needs for Schistosoma haematobium are commonly evaluated using urine filtration with detection of parasite eggs under a microscope. A common symptom of S. haematobium is hematuria, the passing of blood in urine. Hence, the use of hematuria-based diagnostic techniques as a proxy for the assessment of treatment needs has been considered. This study evaluates data from a national survey in Zimbabwe, where three hematuria-based diagnostic techniques, that is microhematuria, macrohematuria, and an anamnestic questionnaire pertaining to self-reported blood in urine, have been included in addition to urine filtration in 280 schools across 70 districts. We developed an egg count model, which evaluates the infection intensity-dependent sensitivity and the specificity of each diagnostic technique without relying on a 'gold' standard. Subsequently, we determined prevalence thresholds for each diagnostic technique, equivalent to a 10% urine filtration-based prevalence and compared classification of districts according to treatment strategy based on the different diagnostic methods. A 10% urine filtration prevalence threshold corresponded to a 17.9% and 13.3% prevalence based on questionnaire and microhematuria, respectively. Both the questionnaire and the microhematuria showed a sensitivity and specificity of more than 85% for estimating treatment needs at the above thresholds. For diagnosis at individual level, the questionnaire showed the highest sensitivity (70.0%) followed by urine filtration (53.8%) and microhematuria (52.2%). The high sensitivity and specificity of a simple questionnaire to estimate treatment needs of S. haematobium suggests that it can be used as a rapid, low-cost method to estimate district prevalence. Our modeling approach can be expanded to include setting-dependent specificity of the technique and should be assessed in relation to other diagnostic methods due to potential cross-reaction with other diseases.
Elimination of STH morbidity in Zimbabwe: Results of 6 years of deworming intervention for school-age children
This paper reports the prevalence and intensity of soil-transmitted helminth (STH) infections measured in Zimbabwe before and after a control intervention based on annual deworming of school-age children (SAC) conducted from 2012 to 2018. In 2010, epidemiological data were collected from 13 195 SAC in 255 randomly selected schools in all districts nationwide using, as diagnostic methods, the Kato-Katz and the formal ether stool concentration technique. At follow up, conducted in 2017, only Kato-Katz was performed; specimens were collected from 13 352 children in 336 schools. The data were evaluated using a geospatial approach. The national prevalence of STH infection in SAC was estimated at 5.8% at baseline, with 0.8% of infections of moderate and heavy intensity. Preventive chemotherapy (PC) targeted all 2.5 million children of school age enrolled in Zimbabwe, with coverage ranging from 49% to 85%. At follow up, national prevalence of STH in SAC was estimated at 0.8%; infections of moderate and heavy intensity almost disappeared (0.1% prevalence). As a result, Zimbabwe can suspend deworming activities in 54 districts and reduce the frequency of PC in the remaining six districts. The total amount of albendazole tablets needed will be approximately 100 000 a year.
Descriptive Epidemiology of Typhoid Fever during an Epidemic in Harare, Zimbabwe, 2012
Typhoid fever remains a significant public health problem in developing countries. In October 2011, a typhoid fever epidemic was declared in Harare, Zimbabwe - the fourth enteric infection epidemic since 2008. To orient control activities, we described the epidemiology and spatiotemporal clustering of the epidemic in Dzivaresekwa and Kuwadzana, the two most affected suburbs of Harare. A typhoid fever case-patient register was analysed to describe the epidemic. To explore clustering, we constructed a dataset comprising GPS coordinates of case-patient residences and randomly sampled residential locations (spatial controls). The scale and significance of clustering was explored with Ripley K functions. Cluster locations were determined by a random labelling technique and confirmed using Kulldorff's spatial scan statistic. We analysed data from 2570 confirmed and suspected case-patients, and found significant spatiotemporal clustering of typhoid fever in two non-overlapping areas, which appeared to be linked to environmental sources. Peak relative risk was more than six times greater than in areas lying outside the cluster ranges. Clusters were identified in similar geographical ranges by both random labelling and Kulldorff's spatial scan statistic. The spatial scale at which typhoid fever clustered was highly localised, with significant clustering at distances up to 4.5 km and peak levels at approximately 3.5 km. The epicentre of infection transmission shifted from one cluster to the other during the course of the epidemic. This study demonstrated highly localised clustering of typhoid fever during an epidemic in an urban African setting, and highlights the importance of spatiotemporal analysis for making timely decisions about targetting prevention and control activities and reinforcing treatment during epidemics. This approach should be integrated into existing surveillance systems to facilitate early detection of epidemics and identify their spatial range.
Evaluation of the InTray and Compact Dry culture systems for the diagnosis of urinary tract infections in patients presenting to primary health clinics in Harare, Zimbabwe
Antimicrobial resistance surveillance data is lacking from many resource-limited settings mainly due to limited laboratory testing. Novel culture systems may address some of the limitations of conventional culture media and expand the availability of microbiology services. The aims of this study were to evaluate the performance of InTray COLOREX Screen/ESBL and Compact Dry for the detection of uropathogens and of extended-spectrum beta-lactamase (ESBL)-producing organisms from urine samples. Urines samples were collected from patients presenting with symptoms of urinary tract infection to primary care clinics in Harare. Performance of the InTray COLOREX Screen, ESBL and Compact Dry chromogenic media were compared to the reference of culture using Brilliance UTI agar and conventional antimicrobial susceptibility testing. A total of 414 samples were included in the analysis. Of the included samples, 98 were positive on Brilliance UTI agar and 83 grew Enterobacterales. The sensitivities and specificities for Enterobacterales were 89.2% (95% CI 80.4–94.9) and 98.2% (95% CI 96.1–99.3) for InTray Screen and 95.2% (95% CI 88.1–98.7) and 99.7% (95% CI 98.3–100) for Compact Dry. Extended-spectrum beta-lactamases were present in 22 isolates from the Brilliance UTI agar. The sensitivity of the InTray COLOREX ESBL culture plates for the detection of ESBL-producing organisms was 95.5% (95% CI 77.2–99.9) and specificity was 99.5% (95% CI 98.2–99.9%). Our findings show good performance of the novel culture systems for the detection of uropathogens and ESBL-producing organisms. Both systems have several advantages over conventional media and have the potential to expand and decentralize laboratory testing.
Use of geographic information systems web mapping application to support active case search to guide public health and social measures in the context of COVID-19 in Zimbabwe: a preliminary report to guide replication of methods in similar resource settings
the new coronavirus (COVID-19) that emerged from Wuhan, Hubei Province of China in December 2019, causing severe acute respiratory syndrome (SARS) has fast spread across the entire globe, with most countries struggling to slow and reduce the spread of the virus through rapid screening, testing, isolation, case management, contact tracing, implementing social distancing and lockdowns. This has been shown to be a major factor in countries that have been successful in containing COVID-19 transmission. Early detection of cases is important, and the use of geospatial technology can support to detect and easily identify potential hotspots that will require timely response. The use of spatial analysis with geographic information systems (GIS) had proved to be effective in providing timely and effective solutions in supporting epidemic response and pandemics over the years. It has developed and evolved rapidly with a complete technological tool for representing data, model construction, visualization and platform construction among others. we conducted a geospatial analysis to develop a web mapping application using ArcMap and ArcGIS online to guide and support active case search of potential COVID-19 cases, within 500m radius of COVID-19 confirmed cases to improve detection and testing of suspected cases. the web mapping application tool guides the active case search teams in the field, with clear boundaries on the houses to be visited within 500-meter radius of confirmed positive cases, to conduct active case search of all cases of severe acute respiratory illnesses (SARI), acute respiratory illnesses (ARI), pneumonia etc, to detect and test for COVID-19 towards containing the pandemic. the use of GIS and spatial statistical tools have become an important and valuable tool in decision-making and, more importantly, guiding health care professional and other stakeholders in the response being carried out in a more coherent and easy manner. It has proven to be effective in supporting the active case search process to rapidly detect, test and isolate cases during the process, towards containing the COVID-19 pandemic.
Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
Background Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant environmental predictors improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a national scale in Zimbabwe. Methods Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed presence or absence of STH among school children aged 10–15 years was used to calibrate ten species distribution models (SDMs). The performance of SDMs calibrated with a set of environmental and edaphic variables was compared to that of SDMs calibrated with environmental variables only. Model performance was evaluated using the true skill statistic and receiver operating characteristic curve. Results Results show a significant improvement in model performance for both A. lumbricoides and hookworms for all ten SDMs after edaphic variables were combined with environmental variables in the modelling of the geographical distribution of the two STHs at national scale. Using the top three performing models, a consensus prediction was developed to generate the first continuous maps of the potential distribution of the two STHs in Zimbabwe. Conclusions The findings from this study demonstrate significant model improvement if relevant edaphic variables are included in model calibration resulting in more accurate mapping of STH. The results also provide spatially-explicit information to aid targeted control of STHs in Zimbabwe and other countries with STH burden.