Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
119
result(s) for
"Manetti, Mirko"
Sort by:
Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis
by
De Paulis, Amato
,
Manetti, Mirko
,
Rosa, Irene
in
Actins - analysis
,
Actins - metabolism
,
Animals
2017
ObjectiveSystemic sclerosis (SSc) features multiorgan fibrosis orchestrated predominantly by activated myofibroblasts. Endothelial-to-mesenchymal transition (EndoMT) is a transdifferentiation by which endothelial cells (ECs) lose their specific morphology/markers and acquire myofibroblast-like features. Here, we determined the possible contribution of EndoMT to the pathogenesis of dermal fibrosis in SSc and two mouse models.MethodsSkin sections were immunostained for endothelial CD31 or vascular endothelial (VE)-cadherin in combination with α-smooth muscle actin (α-SMA) myofibroblast marker. Dermal microvascular ECs (dMVECs) were prepared from SSc and healthy skin (SSc-dMVECs and H-dMVECs). H-dMVECs were treated with transforming growth factor-β1 (TGFβ1) or SSc and healthy sera. Endothelial/mesenchymal markers were assessed by real-time PCR, immunoblotting and immunofluorescence. Cell contractile phenotype was assayed by collagen gel contraction.ResultsCells in intermediate stages of EndoMT were identified in dermal vessels of either patients with SSc or bleomycin-induced and urokinase-type plasminogen activator receptor (uPAR)-deficient mouse models. At variance with H-dMVECs, SSc-dMVECs exhibited a spindle-shaped appearance, co-expression of lower levels of CD31 and VE-cadherin with myofibroblast markers (α-SMA+ stress fibres, S100A4 and type I collagen), constitutive nuclear localisation of the EndoMT driver Snail1 and an ability to effectively contract collagen gels. Treatment of H-dMVECs either with SSc sera or TGFβ1 resulted in the acquisition of a myofibroblast-like morphology and contractile phenotype and downregulation of endothelial markers in parallel with the induction of mesenchymal markers. Matrix metalloproteinase-12-dependent uPAR cleavage was implicated in the induction of EndoMT by SSc sera.ConclusionsIn SSc, EndoMT may be a crucial event linking endothelial dysfunction and development of dermal fibrosis.
Journal Article
Telocytes constitute a widespread interstitial meshwork in the lamina propria and underlying striated muscle of human tongue
2019
Telocytes have recently emerged as unique interstitial cells defined by their extremely long, thin and moniliform prolongations termed telopodes. Despite growing evidence that these cells consistently reside in the stromal compartment of various organs from human beings, studies dealing with telocytes in structures of the oral cavity are scarce. Hence, the present morphologic study was undertaken to explore for the first time the presence and specific localization of telocytes within tissues of the normal human tongue, a complex muscular organ whose main functions include taste, speech, and food manipulation in the oral cavity. Telocytes were initially identified by CD34 immunostaining and confirmed by CD34/PDGFRα double immunofluorescence and transmission electron microscopy. CD34+/PDGFRα+ telocytes were organized in interstitial meshworks either in the tongue lamina propria or in the underlying striated muscle. Lingual telocytes were immunonegative for CD31, c-kit and α-SMA. Telopodes were finely distributed throughout the stromal space and concentrated beneath the lingual epithelium and around CD31+ vessels, skeletal muscle bundles/fibers, and intramuscular nerves and ganglia. They also enveloped salivary gland units outside the α-SMA+ myoepithelial cells and delimited lymphoid aggregates. These findings establish telocytes as a previously overlooked interstitial cell population worth investigating further in the setting of human tongue pathophysiology.
Journal Article
Reappraising the microscopic anatomy of human testis: identification of telocyte networks in the peritubular and intertubular stromal space
2018
Telocytes are a recently described stromal cell type widely distributed in various organs including the female and male reproductive systems. This study was aimed to investigate for the first time the existence, distribution and characteristics of telocytes in normal human testis by an integrated morphological approach (immunohistochemistry, immunofluorescence and transmission electron microscopy). We found that telocytes displaying typical long and moniliform prolongations and coexpressing CD34 and PDGFRα formed networks in the outer layer of peritubular tissue and around Leydig cells and vessels in the intertubular stroma. Testicular telocytes were immunophenotypically negative for CD31, c-kit/CD117 as well as α-SMA, thus making them clearly distinguishable from myoid cells/myofibroblasts located in the inner layer of peritubular tissue. Transmission electron microscopy confirmed the presence of cells ultrastructurally identifiable as telocytes (
i.e
. cells with telopodes alternating podomers and podoms) in the aforementioned locations. Intercellular contacts between neighboring telocytes and telopodes were observed throughout the testicular stromal compartment. Telopodes intimately surrounded and often established close contacts with peritubular myoid cells/myofibroblasts, Leydig cells and vessels. Extracellular vesicles were also frequently detected near telopodes. In summary, we demonstrated that telocytes are a previously neglected stromal component of human testis with potential implications in tissue homeostasis deserving further investigation.
Journal Article
Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury
2019
Although telocytes (TCs) have been proposed to play a “nursing” role in resident satellite cell (SC)-mediated skeletal muscle regeneration, currently there is no evidence of TC-SC morpho-functional interaction following tissue injury. Hence, we explored the presence of TCs and their relationship with SCs in an
ex vivo
model of eccentric contraction (EC)-induced muscle damage. EC-injured muscles showed structural/ultrastructural alterations and changes in electrophysiological sarcolemnic properties. TCs were identified in control and EC-injured muscles by either confocal immunofluorescence (
i.e
. CD34
+
CD31
−
TCs) or transmission electron microscopy (TEM). In EC-injured muscles, an extended interstitial network of CD34
+
TCs/telopodes was detected around activated SCs displaying Pax7
+
and MyoD
+
nuclei. TEM revealed that TCs invaded the SC niche passing with their telopodes through a fragmented basal lamina and contacting the underlying activated SCs. TC-SC interaction after injury was confirmed
in vitro
by culturing single endomysial sheath-covered myofibers and sprouting TCs and SCs. EC-damaged muscle-derived TCs showed increased expression of the recognized pro-myogenic vascular endothelial growth factor-A, and SCs from the same samples exhibited increased MyoD expression and greater tendency to fuse into myotubes. Here, we provide the essential groundwork for further investigation of TC-SC interactions in the setting of skeletal muscle injury and regenerative medicine.
Journal Article
Endotheliopathy in systemic sclerosis: from endothelium-dependent vasodilation to the dysfunction of the vascular reserve, is the paradise lost?
by
Moggi Pignone, Alberto
,
Matucci Cerinic, Marco
,
Manetti, Mirko
in
Blood vessels
,
Comment
,
Dilatation
2025
Microvascular dysfunction is considered one of the main pathogenetic pathways in systemic sclerosis (SSc), and endothelial cells plays a pivotal role even in the early phases of the disease. Endothelial dysfunction results in an early incapacity to adapt the vascular tone and the blood flow under stress conditions, thus losing the important adaptation mechanism that is the vascular reserve.
The loss of vascular tone control in systemic sclerosis is clinically evident as Raynaud’s phenomenon, one of the earliest signs of the disease. An impairment of the vascular reserve has been described in the literature for the main SSc target organs. An alteration of the
coronary reserve
was shown in SSc asymptomatic patients undergoing a provocative cardiac stress tests. For what concerns the
pulmonary circulation
, in presence of normal resting pulmonary pressure values in specific subsets of SSc patients subjected to a cycle ergometer test, an abnormal elevation of pulmonary pressure has been showed. Regarding
renal arterial circulation
, in SSc patients with normal baseline renal function, an absence of improved glomerular filtration after the infusion of a protein load has been demonstrated. Finally, vascular reserve can be altered even in the
gastrointestinal circulation
as assessed by the study of the splanchnic circulation after a balanced meal.
An early detection of an alteration of the physiologic protective mechanism of the vascular reserve could open a “window of opportunity” in which SSc vasculopathy can be potentially reversible, and more responsive to targeted therapeutic strategies.
Journal Article
Morphological evidence of telocytes in human synovium
2018
A new cell type named telocyte (
i.e
. cell with distinctive prolongations called telopodes) has recently been identified in the stroma of various organs in humans. However, no study has yet reported the existence of telocytes in the synovial membrane of diarthrodial joints. This work was therefore undertaken to search for telocytes in the normal human synovium using transmission electron microscopy, immunohistochemistry and immunofluorescence. Ultrastructural analyses demonstrated the presence of numerous spindle-shaped telocytes in the whole synovial sublining layer. Synovial telocytes exhibited very long and thin moniliform telopodes and were particularly concentrated at the boundary between the lining and sublining layers and around blood vessels. Light microscopy confirmed the presence of CD34-positive telocytes in the aforementioned locations. Moreover, synovial telocytes coexpressed CD34 and platelet-derived growth factor receptor α. Double immunostaining further allowed to unequivocally differentiate synovial telocytes (CD34-positive/CD31-negative) from vascular endothelial cells (CD34-positive/CD31-positive). The
in vitro
examination of fibroblast-like synoviocyte primary cultures revealed the coexistence of different cell types, including CD34-positive telocytes projecting typical moniliform telopodes. In conclusion, our work provides the first evidence that telocytes do exist in the human synovium and lays the groundwork for future studies on synovial telocytes in a variety of degenerative and destructive joint diseases.
Journal Article
Altered Immunoregulation in Rheumatoid Arthritis: The Role of Regulatory T Cells and Proinflammatory Th17 Cells and Therapeutic Implications
by
Alunno, Alessia
,
Bistoni, Onelia
,
Manetti, Mirko
in
Abatacept - therapeutic use
,
Adrenal Cortex Hormones - therapeutic use
,
Animals
2015
In recent years several studies investigated the role of T lymphocyte subpopulations in the pathogenesis of rheumatoid arthritis (RA). Pathogenic Th17 cells mediate pannus growth, osteoclastogenesis, and synovial neoangiogenesis; hence they are key players in the development of the disease. On the other hand, regulatory T (Treg) cells are a T cell subset whose peculiar function is to suppress autoreactive lymphocytes. The imbalance between Th17 and Treg cells has been identified as a crucial event in the pathogenesis of RA. In addition, the effects of currently employed RA therapeutic strategies on these lymphocyte subpopulations have been extensively investigated. This review article aims to discuss current knowledge on Treg and Th17 cells in RA and possible implications of their therapeutic targeting in this disorder.
Journal Article
Vascular Leaking, a Pivotal and Early Pathogenetic Event in Systemic Sclerosis: Should the Door Be Closed?
2018
The early phase of systemic sclerosis (SSc) presents edema as one of the main features: this is clinically evident in the digital swelling (puffy fingers) as well as in the edematous skin infiltration of the early active diffuse subset. Other organs could be affected by this same disease process, such as the lung (with the appearance of ground glass opacities) and the heart (with edematous changes on cardiac magnetic resonance imaging). The genesis of tissue edema is tightly linked to pathological changes in the endothelium: various reports demonstrated the effect of transforming growth factor β, vascular endothelial growth factor and hypoxia-reperfusion damage with reactive oxygen species generation in altering vascular permeability and extravasation, in particular in SSc. This condition has an alteration in the glycocalyx thickness, reducing the protection of the vessel wall and causing non-fibrotic interstitial edema, a marker of vascular leak. Moreover, changes in the junctional adhesion molecule family and other adhesion molecules, such as ICAM and VCAM, are associated with an increased myeloid cells' extravasation in the skin and increased myofibroblasts transformation with further vascular leak and cellular migration. This mini-review examines current knowledge on determinants of vascular leak in SSc, shedding light on the role of vascular protection. This could enhance further studies in the light of drug development for early treatment, suggesting that the control of vascular leakage should be considered in the same way that vasodilation and inflammation reduction, as potential therapeutic targets.
Journal Article
Molecular Morphology and Function of Stromal Cells
2021
The term “stromal cells” refers to a highly heterogeneous class of connective tissue cells that build the infrastructure of any organ and fulfill a variety of fundamental roles in health and disease [...]
Journal Article