Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
17
result(s) for
"Manka, Szymon W."
Sort by:
The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability
2018
Microtubules form from longitudinally and laterally assembling tubulin α–β dimers. The assembly induces strain in tubulin, resulting in cycles of microtubule catastrophe and regrowth. This ‘dynamic instability’ is governed by GTP hydrolysis that renders the microtubule lattice unstable, but it is unclear how. We used a human microtubule nucleating and stabilizing neuronal protein, doublecortin, and high-resolution cryo-EM to capture tubulin’s elusive hydrolysis intermediate GDP•Pi state, alongside the prehydrolysis analog GMPCPP state and the posthydrolysis GDP state with and without an anticancer drug, Taxol. GTP hydrolysis to GDP•Pi followed by Pi release constitutes two distinct structural transitions, causing unevenly distributed compressions of tubulin dimers, thereby tightening longitudinal and loosening lateral interdimer contacts. We conclude that microtubule catastrophe is triggered because the lateral contacts can no longer counteract the strain energy stored in the lattice, while reinforcement of the longitudinal contacts may support generation of force.
Journal Article
Structural insights into how augmin augments the mitotic spindle
2023
Cell division critically requires amplification of microtubules (MTs) in the bipolar mitotic spindle. This relies on the filamentous augmin complex that enables MT branching. Studies by Gabel et al., Zupa et al. and Travis et al. describe consistent integrated atomic models of the extraordinarily flexible augmin complex. Their work prompts the question: what is this flexibility really needed for?
Journal Article
2.7 Å cryo-EM structure of ex vivo RML prion fibrils
by
Wadsworth, Jonathan D. F.
,
Betts, Jemma
,
Collinge, John
in
101/28
,
631/1647/2258/1258/1259
,
631/45/460
2022
Mammalian prions propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94–225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP sequence and/or represent distinguishing features of the distinct prion strains.
High-resolution structures of mammalian prions have remained elusive. Here, Manka et al. report the cryo-EM structure of infectious RML prion fibrils from mice. Structural similarity with recently reported infectious 263K prion fibrils from hamsters now suggests a common prion architecture.
Journal Article
A structural basis for prion strain diversity
by
Wadsworth, Jonathan D. F.
,
Betts, Jemma
,
Collinge, John
in
631/1647/2258
,
631/92/470/2284
,
692/699/375/365
2023
Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular β-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.
A near-atomic resolution strain-specific cryo-EM structure of infectious prion fibrils from mice was determined, revealing a structural definition for intra-species prion strain-specific conformations.
Journal Article
Prion strains viewed through the lens of cryo-EM
by
Wadsworth, Jonathan D. F.
,
Manka, Szymon W.
,
Wenborn, Adam
in
Amyloid
,
Animals
,
Biological activity
2023
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Journal Article
Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1
by
Farndale, Richard W
,
Enghild, Jan J
,
Bihan, Dominique
in
Active sites
,
Amino Acid Substitution
,
Biochemistry
2012
Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å–long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.
Journal Article
Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes
by
Paterson, Ian
,
Moores, Carolyn A.
,
Katrukha, Eugene A.
in
Biological Phenomena
,
Biological Sciences
,
Cell Biology
2021
Microtubules are dynamic cytoskeletal polymers that spontaneously switch between phases of growth and shrinkage. The probability of transitioning from growth to shrinkage, termed catastrophe, increases with microtubule age, but the underlying mechanisms are poorly understood. Here, we set out to test whether microtubule lattice defects formed during polymerization can affect growth at the plus end. To generate microtubules with lattice defects, we used microtubule-stabilizing agents that promote formation of polymers with different protofilament numbers. By employing different agents during nucleation of stable microtubule seeds and the subsequent polymerization phase, we could reproducibly induce switches in protofilament number and induce stable lattice defects. Such drug-induced defects led to frequent catastrophes, which were not observed when microtubules were grown in the same conditions but without a protofilament number mismatch. Microtubule severing at the site of the defect was sufficient to suppress catastrophes. We conclude that structural defects within the microtubule lattice can exert effects that can propagate over long distances and affect the dynamic state of the microtubule end.
Journal Article
Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling
by
Farndale, Richard W.
,
Manka, Szymon W.
,
Bihan, Dominique
in
631/1647/2258/1267
,
631/45
,
631/535
2019
Matrix metalloproteinase-3 (MMP-3) participates in normal extracellular matrix turnover during embryonic development, organ morphogenesis and wound healing, and in tissue-destruction associated with aneurysm, cancer, arthritis and heart failure. Despite its inability to cleave triple-helical collagens, MMP-3 can still bind to them, but the mechanism, location and role of binding are not known. We used the Collagen Toolkits, libraries of triple-helical peptides that embrace the entire helical domains of collagens II and III, to map MMP-3 interaction sites. The enzyme recognises five sites on collagen II and three sites on collagen III. They share a glycine-phenylalanine-hydroxyproline/alanine (GFO/A) motif that is recognised by the enzyme in a context-dependent manner. Neither MMP-3 zymogen (proMMP-3) nor the individual catalytic (Cat) and hemopexin (Hpx) domains of MMP-3 interact with the peptides, revealing cooperative binding of both domains to the triple helix. The Toolkit binding data combined with molecular modelling enabled us to deduce the putative collagen-binding mode of MMP-3, where all three collagen chains make contacts with the enzyme in the valley running across both Cat and Hpx domains. The observed binding pattern casts light on how MMP-3 could regulate collagen turnover and compete with various collagen-binding proteins regulating cell adhesion and proliferation.
Journal Article
2.7 Å cryo-EM structure of ex vivo RML prion fibrils
by
Betts, Jemma
,
Saibil, Helen R
,
Wadsworth, Jonathan Df
in
Amino acid sequence
,
Amyloid
,
Biochemistry
2021
Mammalian prions are lethal infectious agents that propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP), often referred to as prion rods. The structural features that define infectious prion rods and the molecular determinants of prion strain diversity are poorly understood. Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94-225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP primary sequence and/or represent distinguishing features of the distinct prion strains. These conformational changes impact the overall geometry of the fibrils and may also impact fibril pairing, one or both of which may critically influence PrP glycoform selection that occurs during strain-specific prion propagation. Competing Interest Statement J.C. is a Director and J.C. and J.D.F.W. are shareholders of D-Gen Limited, an academic spin-out company working in the field of prion disease diagnosis, decontamination, and therapeutics. D-Gen supplied the ICSM35 and ICSM18 antibodies used for western blot and ELISA performed in this study. The other authors declare no potential conflict of interest.
Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation
2019
Doublecortin (DCX) is a neuronal microtubule-associated protein (MAP) indispensable for brain development. Its flexibly linked DC domains - NDC and CDC - mediate microtubule (MT) nucleation and stabilisation, but it is unclear how. Using high-resolution time-resolved cryo-EM, we mapped NDC and CDC interactions with tubulin at different MT polymerisation stages and studied their functional effects on MT dynamics using TIRF microscopy. Although coupled, each DC repeat appears to have a distinct role in MT nucleation and stabilisation by DCX: CDC is a conformationally plastic tubulin binding module that appears to facilitate MT nucleation by binding tubulin oligomers and stabilising tubulin-tubulin contacts in the nascent MT lattice, while NDC appears to be favoured along the mature lattice, providing enhanced and durable MT stabilisation. Our near-atomic resolution structures of MT-bound DC domains also explain in unprecedented detail the DCX mutation-related brain defects observed in the clinic. This modular composition of DCX reflects a common design principle among MAPs where pseudo-repeats of tubulin/MT binding elements chaperone or stabilise distinct conformational transitions to regulate distinct stages of MT dynamic instability.