Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Manley, Paul W."
Sort by:
Tyrosine kinase inhibitors relax pulmonary arteries in human and murine precision-cut lung slices
Background Tyrosine kinase inhibitors (TKIs) inhibit the platelet derived growth factor receptor (PDGFR) and gain increasing significance in the therapy of proliferative diseases, e.g. pulmonary arterial hypertension (PAH). Moreover, TKIs relax pulmonary vessels of rats and guinea pigs. So far, it is unknown, whether TKIs exert relaxation in human and murine pulmonary vessels. Thus, we studied the effects of TKIs and the PDGFR-agonist PDGF-BB in precision-cut lung slices (PCLS) from both species. Methods The vascular effects of imatinib (mice/human) or nilotinib (human) were studied in Endothelin-1 (ET-1) pre-constricted pulmonary arteries (PAs) or veins (PVs) by videomicroscopy. Baseline initial vessel area (IVA) was defined as 100%. With regard to TKI-induced relaxation, K + -channel activation was studied in human PAs (PCLS) and imatinib/nilotinib-related changes of cAMP and cGMP were analysed in human PAs/PVs (ELISA). Finally, the contractile potency of PDGF-BB was explored in PCLS (mice/human). Results Murine PCLS: Imatinib (10 μM) relaxed ET-1-pre-constricted PAs to 167% of IVA. Vice versa, 100 nM PDGF-BB contracted PAs to 60% of IVA and pre-treatment with imatinib or amlodipine prevented PDGF-BB-induced contraction. Murine PVs reacted only slightly to imatinib or PDGF-BB. Human PCLS: 100 μM imatinib or nilotinib relaxed ET-1-pre-constricted PAs to 166% or 145% of IVA, respectively, due to the activation of K ATP -, BK Ca 2+ - or K v -channels. In PVs, imatinib exerted only slight relaxation and nilotinib had no effect. Imatinib and nilotinib increased cAMP in human PAs, but not in PVs. In addition, PDGF-BB contracted human PAs/PVs, which was prevented by imatinib. Conclusions TKIs relax pre-constricted PAs/PVs from both, mice and humans. In human PAs, the activation of K + -channels and the generation of cAMP are relevant for TKI-induced relaxation. Vice versa, PDGF-BB contracts PAs/PVs (human/mice) due to PDGFR. In murine PAs, PDGF-BB-induced contraction depends on intracellular calcium. So, PDGFR regulates the tone of PAs/PVs. Since TKIs combine relaxant and antiproliferative effects, they may be promising in therapy of PAH.
Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering
ABL1 tyrosine-kinase inhibitors (TKI) are front-line therapy for chronic myelogenous leukaemia and are among the best-known examples of targeted cancer therapeutics. However, the dynamic uptake into cells of TKIs of low molecular weight and their intracellular behaviour is unknown because of the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs (imatinib and nilotinib) inside living cells using hyperspectral stimulated Raman scattering imaging. Concentrations of both drugs were enriched over 1,000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced more than tenfold when chloroquine is used simultaneously, which suggests that chloroquine may increase the efficacy of TKIs through lysosome-mediated drug–drug interaction in addition to the commonly proposed autophagy-inhibition mechanism. Tyrosine-kinase inhibitors (TKI) are amongst the best known examples of targeted cancer therapeutics. Now, using hyperspectral stimulated Raman scattering imaging, the label-free visualization and quantification of two TKI drugs inside living cells is reported. Significant trapping of TKI drugs in lysosomes was observed, which can be reversed by co-treatment with chloroquine through lysosome-mediated interactions.
Nilotinib Is More Potent than Imatinib for Treating Plexiform Neurofibroma In Vitro and In Vivo
Plexiform neurofibromas (PNFs) are benign nerve sheath tumors mostly associated with neurofibromatosis type 1. They often extend through multiple layers of tissue and therefore cannot be treated satisfactorily by surgery. Nilotinib is a tyrosine kinase inhibitor used to treat leukemia, with advantages over the prototype imatinib in terms of potency and selectivity towards BCR-ABL, and the DDR, PDGFR, and KIT receptor kinases. In this study, we compared efficacies of the two drugs on cultured cells of PNF in vitro and on xenografted tumor fragments on sciatic nerve of athymic nude mice. Xenografts were monitored weekly using a high resolution ultrasound measurement. Treatment with nilotinib at a daily dose of 100 mg/kg for four weeks led to a reduction of the graft sizesstd by 68±7% in the 8 treated mice, significantly more than the 33±8% reduction in the 8 untreated mice (P<0.05) and the 47±15% in the 7 mice treated with imatinib (P<0.05). The peak plasma nilotinib concentration 6.6±1.1 µM is within the pharmacological range of clinical application. Imatinib, but not nilotinib significantly hindered body weight increase of the mice and elevated cytotoxicity of mouse spleen cells (P<0.05). Our results suggest that nilotinib may be more potent than imatinib for treating PNFs and may also be better tolerated. Imatinib seems to have some off-target effect in elevating immunity.
Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia
Key Points The structural basis for imatinib resistance in chronic myeloid leukaemia (CML) involves the emergence of imatinib-resistant BCR-ABL point mutations; mutations are usually those that impair drug binding. More than 50 different BCR-ABL mutations have been identified in patients with imatinib-resistant CML and through random mutagenesis assays. Different imatinib-resistant BCR-ABL point mutants can have different transforming potentials in cells and different prognostic outcomes. Methods to predict imatinib-resistant BCR-ABL mutants include PCR-based screening assays, such as the highly sensitive allele-specific oligonucleoside (ASO)-PCR method, and the denaturing high-performance liquid chromatography (D-HPLC)-based assay. Imatinib-resistant BCR-ABL point mutations have been found to pre-exist in newly diagnosed patients with CML, as well as be acquired owing to selective pressure of imatinib. Furthermore, imatinib fails to deplete leukaemic stem cells. New BCR-ABL inhibitors in clinical trials include ABL inhibitors (nilotinib), dual Src family and ABL kinase inhibitors (bosutinib, INNO-404 and AZD0530), non-ATP competitive inhibitors of BCR-ABL (ON012380) and Aurora kinase inhibitors (MK-0457 and PHA-739358). The dual Src and ABL inhibitor dasatinib has recently been approved by the US Food and Drug Administration for the treatment of patients with CML or Philadelphia chromosome positive acute lymphoblastic leukaemia resistant or intolerant to imatinib. BCR-ABL point mutants resistant to the second generation inhibitors nilotinib and dasatinib have been identified through cell-based resistance screens. Strategies to circumvent the emergence of resistance include combination therapy using inhibitors of BCR-ABL and other targets. Imatinib is a highly effective treatment for chronic myeloid leukaemia. However, patients often develop resistance to this ABL kinase inhibitor. This Review discusses second generation inhibitors of ABL and other signalling pathways that might help circumvent imatinib resistance. Imatinib, a small-molecule ABL kinase inhibitor, is a highly effective therapy for early-phase chronic myeloid leukaemia (CML), which has constitutively active ABL kinase activity owing to the expression of the BCR-ABL fusion protein. However, there is a high relapse rate among advanced- and blast-crisis-phase patients owing to the development of mutations in the ABL kinase domain that cause drug resistance. Several second-generation ABL kinase inhibitors have been or are being developed for the treatment of imatinib-resistant CML. Here, we describe the mechanism of action of imatinib in CML, the structural basis of imatinib resistance, and the potential of second-generation BCR-ABL inhibitors to circumvent resistance.
Erratum to: Imatinib relaxes the pulmonary venous bed of guinea pigs
Upon publication of the original article [1], it was noticed that the section Authors’ contributions was incorrectly given. The section Authors’ contributions should read as, “NAM performed the experiments, analysed the data, interpreted the data and wrote the manuscript. SS performed the experiments, analysed the data and interpreted the data. DD performed the experiments, interpreted the data and critically reviewed the manuscript. PWM analysed the data, interpreted the data and critically reviewed the manuscript. RR analysed the data, interpreted the data and critically reviewed the manuscript. SU analysed the data, interpreted the data and critically reviewed the manuscript. CM designed the study, analysed the data, interpreted the data and critically reviewed the manuscript. ADR designed the study, performed the experiments, analysed the data, interpreted the data and CRITICALLY REVIEWED AND REVISED THE MANUSCRIPT. All authors read and approved the final manuscript. ” This has now been acknowledged and corrected in this erratum.
Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors
In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr–Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr–Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro , displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr–Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr–Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone. Targeting Bcr–Abl tumours The success of Bcr–Abl tyrosine kinase inhibitors such as imatinib (Gleevec) in treating chronic myelogenous leukaemia (CML) has generated intense interest in the potential of targeting signal transduction mechanisms to create new anticancer drugs. But the picture is complicated by the emergence of inhibitor-resistant kinase alleles. One way to overcome these resistant mutants is to design new ATP-competitive inhibitors, as demonstrated by the second-generation Bcr–Abl inhibitors nilotinib and dasatinib. Zhang et al . have pursued an alternative approach by developing inhibitors that can regulate kinase activity by binding outside of the ATP-binding site. They now demonstrate that GNF-2, a selective allosteric Bcr–Abl inhibitor, binds to the myristate-binding site of the Abl protein. When GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, was used in combination with imatinib or nilotinib, the emergence of drug-resistance mutations was suppressed in vitro . In addition, the combination of the two classes of small molecules displayed efficacy in vivo against the recalcitrant T315I Bcr–Abl mutant in a murine bone-marrow transplantation model. These results indicate that the combination of allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone. GNF-2 is a recently discovered, selective allosteric Bcr–Abl inhibitor. Solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry are now used to show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. The results show that the combination of allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.
Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia
Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34 + CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34 + CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro . The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34 + CP-CML cell engraftment in NSG mice and, upon administration to EGFP + /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells.
Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy
The Fms-like tyrosine kinase-3 (FLT3; fetal liver kinase-2; human stem cell tyrosine kinase-1; CD135) is a class III receptor tyrosine kinase that is normally involved in regulating the proliferation, differentiation, and survival of both hematopoietic cells and dendritic cells. Mutations leading it to be constitutively activated make it an oncogenic driver in ~30% of acute myeloid leukemia (AML) patients where it is associated with poor prognosis. The prevalence of oncogenic FLT3 and the dependency on its constitutively activated kinase activity for leukemia growth make this protein an attractive target for therapeutic intervention. Of the numerous small molecule inhibitors under clinical investigation for the treatment of oncogenic FLT3-positive AML, the N-benzoyl-staurosporine, midostaurin (CGP41251; PKC412; Rydapt ; Novartis Pharma AG, Basel, Switzerland), is the first to be approved by the US Food and Drug Administration for the treatment, in combination with standard chemotherapy, of newly diagnosed adult AML patients who harbor mutations in FLT3. Here, we describe the early design of midostaurin, the preclinical discovery of its activity against oncogenic FLT3, and its subsequent clinical development as a therapeutic agent for FLT3 mutant-positive AML.
Imatinib relaxes the pulmonary venous bed of guinea pigs
Background Recently, the IMPRES study revealed that systemic imatinib improves exercise capacity in patients with advanced pulmonary arterial hypertension. Imatinib blocks the tyrosine kinase activity of the platelet-derived growth factor (PDGF)-receptor (PDGFR), acts antiproliferative and relaxes pulmonary arteries. However so far, the relaxant effects of imatinib on pulmonary veins (PVs) and on the postcapillary resistance are unknown, although pulmonary hypertension (PH) due to left heart disease (LHD) is most common and primarily affects PVs. Next, it is unknown whether activation of PDGFR alters the pulmonary venous tone. Due to the reported adverse effects of systemic imatinib, we evaluated the effects of nebulized imatinib on the postcapillary resistance. Methods Precision-cut lung slices (PCLS) were prepared from guinea pigs. PVs were pre-constricted with Endothelin-1 (ET-1) and the imatinib-induced relaxation was studied by videomicroscopy; PDGF-BB-related vascular properties were evaluated as well. The effects of perfused/nebulized imatinib on the postcapillary resistance were studied in cavine isolated perfused lungs (IPL). Intracellular cAMP/cGMP was measured by ELISA in PVs. Results In PCLS, imatinib (100 μM) relaxed pre-constricted PVs (126%). In PVs, imatinib increased cAMP, but not cGMP and inhibition of adenyl cyclase or protein kinase A reduced the imatinib-induced relaxation. Further, inhibition of K ATP -channels, BK C a 2 + -channels or K v -channels diminished the imatinib-induced relaxation, whereas inhibition of NO-signaling was without effect. In the IPL, perfusion or nebulization of imatinib reduced the ET-1-induced increase of the postcapillary resistance. In PCLS, PDGF-BB contracted PVs, which was blocked by imatinib and by the PDGFR-β kinase inhibitor SU6668, whereas inhibition of PDGFR-α (ponatinib) had no significant effect. Conversely, PDGFR-β kinase inhibitors (SU6668/DMPQ) relaxed PVs pre-constricted with ET-1 comparable to imatinib, whereas the PDGFR-α kinase inhibitor ponatinib did not. Conclusions Imatinib-induced relaxation depends on cAMP and on the activation of K + -channels. Perfused or nebulized imatinib significantly reduces the postcapillary resistance in the pre-constricted (ET-1) pulmonary venous bed. Hence, nebulization of imatinib is feasible and might reduce systemic side effects. Conversely, PDGF-BB contracts PVs by activation of PDGFR-β suggesting that imatinib-induced relaxation depends on PDGFR-β-antagonism. Imatinib combines short-term relaxant and long-term antiproliferative effects. Thus, imatinib might be a promising therapy for PH due to LHD.