Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
112 result(s) for "Mann, Allison"
Sort by:
Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification
To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region ( E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.
Metagenomic and paleopathological analyses of a historic documented collection explore ancient dental calculus as a diagnostic tool
Dental calculus is a microbial biofilm that contains biomolecules from oral commensals and pathogens, including those potentially related to cause of death (CoD). To assess the utility of calculus as a diagnostically informative substrate, in conjunction with paleopathological analysis, calculus samples from 39 individuals in the Smithsonian Institution’s Robert J. Terry Collection with CoDs of either syphilis or tuberculosis were assessed via shotgun metagenomic sequencing for the presence of Treponema pallidum subsp . pallidum and Mycobacterium tuberculosis complex (MTBC) DNA. Paleopathological analysis revealed that frequencies of skeletal lesions associated with these diseases were partially inconsistent with diagnostic criteria. Although recovery of T. p. pallidum DNA from individuals with a syphilis CoD was elusive, MTBC DNA was identified in at least one individual with a tuberculosis CoD. The authenticity of MTBC DNA was confirmed using targeted quantitative PCR assays, MTBC genome enrichment, and in silico bioinformatic analyses; however, the lineage of the MTBC strain present could not be determined. Overall, our study highlights the utility of dental calculus for molecular detection of tuberculosis in the archaeological record and underscores the effect of museum preparation techniques and extensive handling on pathogen DNA preservation in skeletal collections.
Biodiversity of protists and nematodes in the wild nonhuman primate gut
Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.
The Adult Phenylketonuria (PKU) Gut Microbiome
Phenylketonuria (PKU) is an inborn error of phenylalanine metabolism primarily treated through a phenylalanine-restrictive diet that is frequently supplemented with an amino acid formula to maintain proper nutrition. Little is known of the effects of these dietary interventions on the gut microbiome of PKU patients, particularly in adults. In this study, we sequenced the V4 region of the 16S rRNA gene from stool samples collected from adults with PKU (n = 11) and non-PKU controls (n = 21). Gut bacterial communities were characterized through measurements of diversity and taxa abundance. Additionally, metabolic imputation was performed based on detected bacteria. Gut community diversity was lower in PKU individuals, though this effect was only statistically suggestive. A total of 65 genera across 5 phyla were statistically differentially abundant between PKU and control samples (p < 0.001). Additionally, we identified six metabolic pathways that differed between groups (p < 0.05), with four enriched in PKU samples and two in controls. While the child PKU gut microbiome has been previously investigated, this is the first study to explore the gut microbiome of adult PKU patients. We find that microbial diversity in PKU children differs from PKU adults and highlights the need for further studies to understand the effects of dietary restrictions.
Dental caries and its association with the oral microbiomes and HIV in young children—Nigeria (DOMHaIN): a cohort study
Background This study seeks to understand better the mechanisms underlying the increased risk of caries in HIV-infected school-aged Nigerian children by examining the relationship between the plaque microbiome and perinatal HIV infection and exposure. We also seek to investigate how perinatal HIV infection and exposure impact tooth-specific microbiomes' role on caries disease progression. Methods The participants in this study were children aged 4 to 11 years recruited from the University of Benin Teaching Hospital (UBTH), Nigeria, between May to November 2019. Overall, 568 children were enrolled in three groups: 189 HIV-infected (HI), 189 HIV-exposed but uninfected (HEU) and 190 HIV-unexposed and uninfected (HUU) as controls at visit 1 with a 2.99% and 4.90% attrition rate at visit 2 and visit 3 respectively. Data were obtained with standardized questionnaires. Blood samples were collected for HIV, HBV and HCV screening; CD4, CD8 and full blood count analysis; and plasma samples stored for future investigations; oral samples including saliva, buccal swabs, oropharyngeal swab, tongue swab, dental plaque were collected aseptically from participants at different study visits. Conclusions Results from the study will provide critical information on how HIV exposure, infection, and treatment, influence the oral microbiome and caries susceptibility in children. By determining the effect on community taxonomic structure and gene expression of dental microbiomes, we will elucidate mechanisms that potentially create a predisposition for developing dental caries. As future plans, the relationship between respiratory tract infections, immune and inflammatory markers with dental caries in perinatal HIV infection and exposure will be investigated.
HIV infection and exposure is associated with increased cariogenic taxa, reduced taxonomic turnover, and homogenized spatial differentiation for the supragingival microbiome
Background The oral microbiome consists of distinct microbial communities that colonize various ecological niches within the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g., gut, urogenital), the oral microbiome is directly and frequently exposed to external influences, contributing to its relatively lower stability over time. In individuals with compromised immunity, such as those living with HIV, the composition and stability of the oral microbiome may be especially vulnerable to disruption. Cross-sectional studies of the oral microbiome in children living with HIV capture a glimpse of this temporal dynamism, yet a full appreciation of the relative stability, robusticity, and spatial structure of the oral environment is necessary to understand the role of microbial communities in promoting health or disease in the context of HIV. Here, we investigate the spatial and temporal stability of the oral microbiome over three sampling time points in the context of HIV infection and exposure. Individual teeth were sampled from a cohort of 565 Nigerian children with varying levels of tooth decay severity (i.e., caries disease). We collected 1960 supragingival plaque samples and characterized the oral microbiome using a metataxonomic approach targeting an approximately 478 bp region of the bacterial rpo C gene. Results Both HIV infection and exposure have significant, if subtle, effects on the stability of the supragingival plaque microbiome. Specifically, we observed (1) a slight but significant reduction in taxonomic turnover among HIV-exposed and infected children; (2) an association between HIV infection and a more homogenized oral community across the anterior and posterior dentition in children living with HIV; and (3) a relationship between impaired immunity, lower taxonomic turnover over time, and an elevated frequency of cariogenic taxa, including Streptococcus mutans , in children living with HIV. Conclusions Despite the influence of various contributing factors, we observe an effect of HIV status on both the temporal and spatial stability of the oral microbiome. Specifically, the results presented here indicate that the oral microbiome shows less community change over time in children living with or exposed to HIV, which we hypothesize may be linked to a reduced capacity to adapt to environmental changes. The observed taxonomic rigidity among children living with HIV may signal community dysfunction, potentially leading to a higher incidence of oral diseases, including caries, in this cohort. -7X2s65mtVxV_hGnFfTU7i Video Abstract
Differential preservation of endogenous human and microbial DNA in dental calculus and dentin
Dental calculus (calcified dental plaque) is prevalent in archaeological skeletal collections and is a rich source of oral microbiome and host-derived ancient biomolecules. Recently, it has been proposed that dental calculus may provide a more robust environment for DNA preservation than other skeletal remains, but this has not been systematically tested. In this study, shotgun-sequenced data from paired dental calculus and dentin samples from 48 globally distributed individuals are compared using a metagenomic approach. Overall, we find DNA from dental calculus is consistently more abundant and less contaminated than DNA from dentin. The majority of DNA in dental calculus is microbial and originates from the oral microbiome; however, a small but consistent proportion of DNA (mean 0.08 ± 0.08%, range 0.007–0.47%) derives from the host genome. Host DNA content within dentin is variable (mean 13.70 ± 18.62%, range 0.003–70.14%), and for a subset of dentin samples (15.21%), oral bacteria contribute > 20% of total DNA. Human DNA in dental calculus is highly fragmented, and is consistently shorter than both microbial DNA in dental calculus and human DNA in paired dentin samples. Finally, we find that microbial DNA fragmentation patterns are associated with guanine-cytosine (GC) content, but not aspects of cellular structure.
A Synthetic Formula Amino Acid Diet Leads to Microbiome Dysbiosis, Reduced Colon Length, Inflammation, and Altered Locomotor Activity in C57BL/6J Mice
The effects of synthetic, free-amino acid diets, similar to those prescribed as supplements for (phenylketonuria) PKU patients, on gut microbiota and overall health are not well understood. In the current, multidisciplinary study, we examined the effects of a synthetically-derived, low-fiber, amino acid diet on behavior, cognition, gut microbiome composition, and inflammatory markers. A cohort of 20 male C57BL/6J mice were randomly assigned to either a standard or synthetic diet (n = 10) at post-natal day 21 and maintained for 13 weeks. Sequencing of the 16S rRNA gene from fecal samples revealed decreased bacterial diversity, increased abundance of bacteria associated with disease, such as Prevotella, and a downward shift in gut microbiota associated with fermentation pathways in the synthetic diet group. Furthermore, there were decreased levels of short chain fatty acids and shortening of the colon in mice consuming the synthetic diet. Finally, we measured TNF-α, IL-6, and IL-10 in serum, the hippocampus, and colon, and found that the synthetic diet significantly increased IL-6 production in the hippocampus. These results demonstrate the importance of a multidisciplinary approach to future diet and microbiome studies, as diet not only impacts the gut microbiome composition but potentially systemic health as well.
The Interstellar and Circumgalactic Media at low and high redshift as traced by Atomic Carbon and Carbon Monoxide
A different chemistry of the interstellar medium (ISM) is expected in the circumgalactic medium (CGM) gas where high-energetic particles (i.e. cosmic rays) seem to be produced in-situ by the hot X-ray gas, as it is observed in the Perseus cluster. This very different astrochemistry, where extreme gas-dust thermal decoupling is expected, and where CO can be destroyed over large massscales, is the subject of the investigation briefly reported here. We introduce an on-going project aiming at studying the properties of the CGM of two clusters at low and high redshift using their molecular gas tracers and thermal emission from dust.