Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Manning, Adrian D."
Sort by:
The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems
by
Lindenmayer, David B.
,
Manning, Adrian D.
,
Barton, Philip S.
in
Analysis
,
Animal and plant ecology
,
Animal Nutritional Physiological Phenomena
2013
Carrion provides a resource for a subset of animal species that deliver a critical ecosystem service by consuming dead animal matter and recycling its nutrients. A growing number of studies have also shown various effects of carrion on different plant and microbial communities. However, there has been no review of these studies to bring this information together and identify priority areas for future research. We review carrion ecology studies from the last two decades and summarise the range of spatial and temporal effects of carrion on soil nutrients, microbes, plants, arthropods, and vertebrates. We identify key knowledge gaps in carrion ecology, and discuss how closing these gaps can be achieved by focusing future research on the (1) different kinds of carrion resources, (2) interactions between different components of the carrion community, (3) the ways that ecosystem context can moderate carrion effects, and (4) considerations for carrion management. To guide this research, we outline a framework that builds on the 'ephemeral resource patch' concept, and helps to structure research questions that link localised effects of carrion with their consequences at landscape scales. This will enable improved characterisation of carrion as a unique resource pool, provide answers for land managers in a position to influence carrion availability, and establish the ways that carrion affects the dynamics of species diversity and ecological processes within landscapes.
Journal Article
Adapting reintroduction tactics in successive trials increases the likelihood of establishment for an endangered carnivore in a fenced sanctuary
by
Batson, William G.
,
Gordon, Iain J.
,
Wilson, Belinda A.
in
Adaptive management
,
Animals
,
Biodiversity
2020
Threatened species recovery programs are increasingly turning to reintroductions to reverse biodiversity loss. Here we present a real-world example where tactics (techniques which influence post-release performance and persistence) and an adaptive management framework (which incorporates feedback between monitoring and future actions) improved reintroduction success. Across three successive trials we investigated the influence of tactics on the effective survival and post-release dispersal of endangered eastern quolls (Dasyurus viverrinus) reintroduced into Mulligans Flat Woodland Sanctuary, Australian Capital Territory. Founders were monitored for 42 days post-release, and probability of survival and post-release dispersal were tested against trial, origin, sex, den sharing and presence of pouch young. We adopted an adaptive management framework, using monitoring to facilitate rapid learning and to implement interventions that improved reintroduction success. Founders released in the first trial were less likely to survive (28.6%, n = 14) than those founders released the second (76.9%, n = 13) and third trials (87.5%, n = 8). We adapted several tactics in the second and third trials, including the selection of female-only founders to avoid elevated male mortality, and post-mating releases to reduce stress. Founders that moved dens between consecutive nights were less likely to survive, suggesting that minimising post-release dispersal can increase the probability of survival. The probability of moving dens was lower in the second and third trials, for females, and when den sharing with another founder. This study demonstrates that, through iterative trials of tactics involving monitoring and learning, adaptive management can be used to significantly improve the success of reintroduction programs.
Journal Article
Eaten Out of House and Home: Impacts of Grazing on Ground-Dwelling Reptiles in Australian Grasslands and Grassy Woodlands
2014
Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing.
Journal Article
Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals
by
Hayakawa, Takashi
,
Manning, Adrian D.
,
Zhou, Yang
in
Agonists
,
Aquatic mammals
,
Aquatic organisms
2022
Abstract
Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to β-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect β-glucosides and other substances might be shared and ancestral among mammals.
Journal Article
The Future of Large Old Trees in Urban Landscapes
by
Lindenmayer, David B.
,
Manning, Adrian D.
,
Ikin, Karen
in
Australian Capital Territory
,
Bearing
,
Biodiversity
2014
Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha(-1); and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.
Journal Article
Trends in animal translocation research
by
Pierson, Jennifer C.
,
Gordon, Iain J.
,
Ross, Catherine E.
in
animals
,
Biodiversity
,
biodiversity decline
2023
Translocations are an important conservation tool that enable the restoration of species and their ecological functions. They are particularly important during the current environmental crisis. We used a combination of text‐analysis tools to track the history and evolution of the peer‐reviewed scientific literature on animal translocation science. We compared this corpus with research showcased in the IUCNs Global Conservation Translocation Perspectives, a curated collection of non‐peer‐reviewed reintroduction case studies. We show that the peer‐reviewed literature, in its infancy, was dominated by charismatic species. It then grew in two classical threads: management of the species of concern and management of the environment of the species. The peer‐reviewed literature exhibits a bias towards large charismatic mammals, and while these data are invaluable, expansion to under‐represented groups such as insects and reptiles will be critical to combating biodiversity loss across taxonomic groups. These biases were similar in the Translocation Perspectives, but with some subtle differences. To ensure translocation science can address global issues, we need to overcome barriers that restrict this research to a limited number of countries.
Journal Article
Mini Safe Havens for population recovery and reintroductions ‘beyond-the-fence’
2023
In response to the ongoing decline of fauna worldwide, there has been growing interest in the rewilding of whole ecosystems outside of fenced sanctuaries or offshore islands. This interest will inevitably result in attempts to restore species where eliminating threats from predators and competitors is extremely challenging or impossible, or reintroductions of predators that will increase predation risk for extant prey (i.e., coexistence conservation). We propose ‘Mini Safe Havens’ (MSHs) as a potential tool for managing these threats. Mini Safe Havens are refuges that are permanently permeable to the focal species; allowing the emigration of individuals while maintaining gene flow through the boundary. Crucial to the effectiveness of the approach is the ongoing maintenance and monitoring required to preserve a low-to-zero risk of key threats within the MSH; facilitating in-situ learning and adaptation by focal species to these threats, at a rate and intensity of exposure determined by the animals themselves. We trialled the MSH approach for a pilot reintroduction of the Australian native New Holland mouse (Pseudomys novaehollandiae), in the context of a trophic rewilding project to address potential naïveté to a reintroduced native mammalian predator. We found that mice released into a MSH maintained their weight and continued to use the release site beyond 17 months (525 days) post-release. In contrast, individuals in temporary soft-release enclosures tended to lose weight and became undetectable approximately 1-month post-release. We discuss the broad applicability of MSHs for population recovery and reintroductions ‘beyond-the-fence’ and recommend avenues for further refinement of the approach.
Journal Article
Pocket parks in a compact city: how do birds respond to increasing residential density?
by
Lindenmayer, David B.
,
Manning, Adrian D.
,
Ikin, Karen
in
Animal populations
,
Animal, plant and microbial ecology
,
Applied ecology
2013
The desire to improve urban sustainability is motivating many city planners to adopt growth strategies that increase residential density, leading to substantial changes to urban landscapes. What effect this change will have on biodiversity remains unclear, but it is expected that the role of public greenspace in providing wildlife habitat will become critical. We explored the role of urban “pocket parks” as habitat for birds, and how this role changed with increasing residential density in the surrounding neighbourhood. We found that parks in neighbourhoods with high levels of public greenspace (corresponding to less residential land) supported more bird species and individuals overall, and more woodland-dependent species, insectivores and hollow-nesters. Total greenspace area was more important (included in the best ranked models for all bird responses) than the configuration (number, average size and connectivity) of greenspace patches. The majority of species were common suburban birds, indicating that species we assume are tolerant to urban areas will be negatively affected by increasing residential density. Parks form part of an interconnected network of urban open space. For parks to continue to support a diverse native bird community, the network must be viewed, managed, and maintained in its entirety. We suggest three key management actions to improve the bird diversity values of urban greenspaces in compact cities: (1) Increase urban greenspace cover in residential neighbourhoods. (2) Increase vegetation structure in greenspace. (3) Encourage homeowners to plant trees and shrubs.
Journal Article
Woodlands and woody debris: Understanding structure and composition to inform restoration
by
Lindenmayer, David B.
,
Manning, Adrian D.
,
Cunningham, Ross B.
in
Accumulation
,
Biodiversity
,
Biology and Life Sciences
2020
Simplification of stand structure of forests and woodlands through human-induced modification is a serious threat to biodiversity. Restoring lost habitat complexity and heterogeneity, such as woody debris, requires an understanding of the relationships between different elements that contribute to stand structure. In this study, we examine the structure and composition of a critically endangered box-gum grassy woodland in south-eastern Australia and relationships with woody debris loads. We found that: (1) despite modification by humans and differing susceptibility to dieback, the two dominant tree species, Blakeley's red gum, Eucalyptus blakelyi and yellow box, E. melliodora, occurred in similar proportions irrespective of vegetation density; (2) E. blakelyi had the largest number of stems and basal area, but while E. melliodora had fewer stems, it had a similar basal area to E. blakelyi. E. melliodora also showed fewer signs of dieback than E. blakelyi with between 40-50% trees in good condition compared to 2% for the latter species; (3) woody debris loads were low compared to other studies in woodland, but there were levels of heterogeneity indicating 'natural' accumulation was occurring; (4) tree basal area and woody debris loads had a 1:1 relationship across all sites and vegetation densities. Overall, our study indicated that ecosystem recovery was taking place (i.e. with many young trees), but there were fewer large trees that are known to supply most woody debris. Our findings highlight the slow accumulation of this critical resource because the volumes were lower than expected. Based on our results, we recommend: (1) aiming for approximately a 50:50 ratio of yellow box to Blakely's red gum basal area in woodland restoration projects; (2) to accelerate the recovery of woodland structure, addition of woody debris should be added at a minimum ratio of 1:1 to standing basal area (i.e. a basal area of 5.99 m2 requires a minimum volume of 3.11 m3) (3) managing for both volume and heterogeneity of woody debris loads; (4) preserving large diameter trees to harness proportionally higher woody debris and litter inputs.
Journal Article
The ‘Goldilocks Zone’ of predation: the level of fox control needed to select predator resistance in a reintroduced mammal in Australia
by
Manning, Adrian D
,
McElroy, Tom
,
Wimpenny, Claire
in
Animal behavior
,
Animal species
,
Anthropogenic factors
2021
A large component of the anthropogenic biodiversity crisis is the loss of animal species. In response, there has been significant investment in reintroductions of species to their historical ranges. Predation by native and exotic predators, however, remains a barrier to success. Over the past 200 years, Australia has seen the highest rate of mammal extinction on earth, with mammals within a critical weight range (CWR: 35 g–5.5 kg) most affected due to predation by exotic predators. Populations of some threatened species now exist only in Tasmania, offshore islands, or predator-proof sanctuaries. The next critical step is to return native populations outside of predator-free areas, ‘beyond-the-fence’, on the continental mainland. Given our current inability to completely remove exotic predators from mainland ecosystems, how can we achieve successful mammal reintroductions? A potential solution is to drive adaptation of reintroduced animals towards predator-resistance by exposing them to low levels of predation. We propose the concept of a ‘Goldilocks Zone’—the ‘just right’ levels of predation needed to drive selection for predator-resistant native species, while ensuring population viability. We experimentally reintroduced a mammal, the eastern bettong (Bettongia gaimardi), to mainland Australia, 100 years after its local extinction. Using an intense baiting regime, we reduced the population density of the red fox (Vulpes vulpes), the main factor behind the eastern bettong’s extirpation from the continent. Reducing bait take to 15% of previous levels allowed differential survival among bettongs; some surviving under 100 days and others over 450 (~ 4 times longer than some similar trials with related species). Surviving individuals were generally larger at release than those that died earlier, implying selection for larger bettongs. Our results suggest that reducing predation could establish a Goldilocks Zone that could drive selection for bettongs with predator-resistant traits. Our work contributes to a growing body of literature that explores a shift towards harnessing evolutionary principles to combat the challenges posed by animal management and conservation.
Journal Article