Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
Is Full-Text AvailableIs Full-Text Available
-
YearFrom:-To:
-
More FiltersMore FiltersSubjectCountry Of PublicationPublisherSourceTarget AudienceLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
91
result(s) for
"Manning, Jeremy"
Sort by:
Teen Titans go! Vol. 5, Falling stars
by
Fisch, Sholly, author
,
Cohen, Ivan, author
,
Manning, Matthew K, author
in
Teen Titans (Fictitious characters) Comic books, strips, etc.
,
Superheroes Comic books, strips, etc.
,
Teen Titans (Fictitious characters) Fiction.
2018
\"Being a superhero is tough enough, but the team must face some everyday chores and obstacles that may prove to be too much, even for them. The Titans tackle the single most terrifying word in the English language: 'dentist.' Will Robin's dental routine save him from making a dreaded trip? Then, the heroes get crafty when Raven and Cyborg create a pair of spooky-looking leggings from a pattern in one of Raven's arcane books\"-- Provided by publisher.
Temporal asymmetries in inferring unobserved past and future events
2024
Unlike temporally symmetric inferences about simple sequences, inferences about our own lives are asymmetric: we are better able to infer the past than the future, since we remember our past but not our future. Here we explore whether there are asymmetries in inferences about the unobserved pasts and futures of other people’s lives. In two experiments (analyses of the replication experiment were pre-registered), our participants view segments of two character-driven television dramas and write out what they think happens just before or after each just-watched segment. Participants are better at inferring unseen past (versus future) events. This asymmetry is driven by participants’ reliance on characters’ conversational references in the narrative, which tend to favor the past. This tendency is also replicated in a large-scale analysis of conversational references in natural conversations. Our work reveals a temporal asymmetry in how observations of other people’s behaviors can inform inferences about the past and future.
Memories of our past experiences enable us to reconstruct (in the present) our past better than our future. Here, the authors show that we are also able to better reconstruct the pasts (versus futures) in other people’s lives.
Journal Article
High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns
by
Manning, Jeremy R.
,
Owen, Lucy L. W.
,
Chang, Thomas H.
in
59/36
,
631/378/116/1925
,
631/378/2649
2021
Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain.
Coordinated patterns of brain activity reflect cognitive processes. Here the authors use a mathematical framework for describing dynamic patterns in brain networks to show they organize in a fractal-like hierarchy during story listening.
Journal Article
Oscillatory patterns in temporal lobe reveal context reinstatement during memory search
2011
Psychological theories of memory posit that when people recall a past event, they not only recover the features of the event itself, but also recover information associated with other events that occurred nearby in time. The events surrounding a target event, and the thoughts they evoke, may be considered to represent a context for the target event, helping to distinguish that event from similar events experienced at different times. The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. We sought to determine whether context reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. Analyzing electrocorticographic recordings taken as 69 neurosurgical patients studied and recalled lists of words, we uncovered a neural signature of context reinstatement. Upon recalling a studied item, we found that the recorded patterns of brain activity were not only similar to the patterns observed when the item was studied, but were also similar to the patterns observed during study of neighboring list items, with similarity decreasing reliably with positional distance. The degree to which individual patients displayed this neural signature of context reinstatement was correlated with their tendency to recall neighboring list items successively. These effects were particularly strong in temporal lobe recordings. Our findings show that recalling a past event evokes a neural signature of the temporal context in which the event occurred, thus pointing to a neural basis for episodic memory.
Journal Article
Topographic Factor Analysis: A Bayesian Model for Inferring Brain Networks from Neural Data
by
Ranganath, Rajesh
,
Manning, Jeremy R.
,
Blei, David M.
in
Algorithms
,
Artificial intelligence
,
Bayes Theorem
2014
The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI) datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly) reflects the activity of the brain structure(s)-located at the corresponding point in space-at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA), a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures.
Journal Article
Fitness tracking reveals task-specific associations between memory, mental health, and physical activity
by
Notaro, Gina M.
,
Chen, Esme
,
Manning, Jeremy R.
in
631/378/2649
,
631/477/2811
,
Activity patterns
2022
Physical activity can benefit both physical and mental well-being. Different forms of exercise (e.g., aerobic versus anaerobic; running versus walking, swimming, or yoga; high-intensity interval training versus endurance workouts; etc.) impact physical fitness in different ways. For example, running may substantially impact leg and heart strength but only moderately impact arm strength. We hypothesized that the mental benefits of physical activity might be similarly differentiated. We focused specifically on how different intensities of physical activity might relate to different aspects of memory and mental health. To test our hypothesis, we collected (in aggregate) roughly a century’s worth of fitness data. We then asked participants to fill out surveys asking them to self-report on different aspects of their mental health. We also asked participants to engage in a battery of memory tasks that tested their short and long term episodic, semantic, and spatial memory performance. We found that participants with similar physical activity habits and fitness profiles tended to also exhibit similar mental health and task performance profiles. These effects were task-specific in that different physical activity patterns or fitness characteristics varied with different aspects of memory, on different tasks. Taken together, these findings provide foundational work for designing physical activity interventions that target specific components of cognitive performance and mental health by leveraging low-cost fitness tracking devices.
Journal Article
Geometric models reveal behavioural and neural signatures of transforming experiences into memories
by
Heusser, Andrew C.
,
Manning, Jeremy R.
,
Fitzpatrick, Paxton C.
in
59/36
,
631/378/1595/2618
,
631/477/2811
2021
How do we preserve and distort our ongoing experiences when encoding them into episodic memories? The mental contexts in which we interpret experiences are often person-specific, even when the experiences themselves are shared. Here we develop a geometric framework for mathematically characterizing the subjective conceptual content of dynamic naturalistic experiences. We model experiences and memories as trajectories through word-embedding spaces whose coordinates reflect the universe of thoughts under consideration. Memory encoding can then be modelled as geometrically preserving or distorting the ‘shape’ of the original experience. We applied our approach to data collected as participants watched and verbally recounted a television episode while undergoing functional neuroimaging. Participants’ recountings preserved coarse spatial properties (essential narrative elements) but not fine spatial scale (low-level) details of the episode’s trajectory. We also identified networks of brain structures sensitive to these trajectory shapes.
Heusser, Fitzpatrick and Manning use geometric models to show the idiosyncratic ways in which people preserve or distort the shapes of their experiences when they encode them into memories.
Journal Article
A probabilistic approach to discovering dynamic full-brain functional connectivity patterns
2018
Recent research shows that the covariance structure of functional magnetic resonance imaging (fMRI) data – commonly described as functional connectivity – can change as a function of the participant's cognitive state (for review see Turk-Browne, 2013). Here we present a Bayesian hierarchical matrix factorization model, termed hierarchical topographic factor analysis (HTFA), for efficiently discovering full-brain networks in large multi-subject neuroimaging datasets. HTFA approximates each subject's network by first re-representing each brain image in terms of the activities of a set of localized nodes, and then computing the covariance of the activity time series of these nodes. The number of nodes, along with their locations, sizes, and activities (over time) are learned from the data. Because the number of nodes is typically substantially smaller than the number of fMRI voxels, HTFA can be orders of magnitude more efficient than traditional voxel-based functional connectivity approaches. In one case study, we show that HTFA recovers the known connectivity patterns underlying a collection of synthetic datasets. In a second case study, we illustrate how HTFA may be used to discover dynamic full-brain activity and connectivity patterns in real fMRI data, collected as participants listened to a story. In a third case study, we carried out a similar series of analyses on fMRI data collected as participants viewed an episode of a television show. In these latter case studies, we found that the HTFA-derived activity and connectivity patterns can be used to reliably decode which moments in the story or show the participants were experiencing. Further, we found that these two classes of patterns contained partially non-overlapping information, such that decoders trained on combinations of activity-based and dynamic connectivity-based features performed better than decoders trained on activity or connectivity patterns alone. We replicated this latter result with two additional (previously developed) methods for efficiently characterizing full-brain activity and connectivity patterns.
•Hierarchical Topographic Factor Analysis identifies full-brain activity and network dynamics in multi-subject brain data.•We applied HTFA to fMRI data and found that activity and connectivity patterns reflect story and movie timing information.•Activity and connectivity patterns contain partially non-overlapping information about when in a story or movie participants are experiencing.
Journal Article
A neural signature of contextually mediated intentional forgetting
by
Hulbert, Justin C.
,
Manning, Jeremy R.
,
Norman, Kenneth A.
in
Adult
,
Behavioral Science and Psychology
,
Brain - diagnostic imaging
2016
The
mental context
in which we experience an event plays a fundamental role in how we organize our memories of an event (e.g. in relation to other events) and, in turn, how we retrieve those memories later. Because we use contextual representations to retrieve information pertaining to our past, processes that alter our representations of context can enhance or diminish our capacity to retrieve particular memories. We designed a functional magnetic resonance imaging (fMRI) experiment to test the hypothesis that people can
intentionally
forget previously experienced events by changing their mental representations of contextual information associated with those events. We had human participants study two lists of words, manipulating whether they were told to forget (or remember) the first list prior to studying the second list. We used pattern classifiers to track neural patterns that reflected contextual information associated with the first list and found that, consistent with the notion of contextual change, the activation of the first-list contextual representation was lower following a forget instruction than a remember instruction. Further, the magnitude of this neural signature of contextual change was negatively correlated with participants’ abilities to later recall items from the first list.
Journal Article
Distributed Subnetworks of Depression Defined by Direct Intracranial Neurophysiology
by
Chang, Edward F.
,
Scangos, Katherine Wilson
,
Manning, Jeremy R.
in
Activity patterns
,
biomarkers
,
biotypes
2021
Major depressive disorder is a common and disabling disorder with high rates of treatment resistance. Evidence suggests it is characterized by distributed network dysfunction that may be variable across patients, challenging the identification of quantitative biological substrates. We carried out this study to determine whether application of a novel computational approach to a large sample of high spatiotemporal resolution direct neural recordings in humans could unlock the functional organization and coordinated activity patterns of depression networks. This group level analysis of depression networks from heterogenous intracranial recordings was possible due to application of a correlational model-based method for inferring whole-brain neural activity. We then applied a network framework to discover brain dynamics across this model that could classify depression. We found a highly distributed pattern of neural activity and connectivity across cortical and subcortical structures that was present in the majority of depressed subjects. Furthermore, we found that this depression signature consisted of two subnetworks across individuals. The first was characterized by left temporal lobe hypoconnectivity and pathological beta activity. The second was characterized by a hypoactive, but hyperconnected left frontal cortex. These findings have applications toward personalization of therapy.
Journal Article