Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
383 result(s) for "Manoj Kumar Yadav"
Sort by:
Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons
In this study, the neuroprotective potential of arbutin (100 µmol L ) pre-treatment and post-treatment against oxygen/ glucose deprivation (OGD) and reoxygenation (R) induced ischemic injury in cultured rat cortical neurons was explored. The OGD (60 min) and reoxygenation (24 h) treatment significantly ( < 0.001) compromised the antioxidant defence in cultured neurons. Subsequently, an increase ( < 0.001) in lipid peroxidation and inflammatory cytokines (tumour necrosis factor-α and nuclear factor kappa-B) declined neuron survival. In pre- and post-condition experiments, treatment with arbutin enhanced both survival ( < 0.01) and integrity ( < 0.05) of cultured neurons. Results showed that arbutin protects ( < 0.05) against peroxidative changes, inflammation, and enhanced the antioxidant activity ( glutathione, superoxide dismutase and catalase) in cultured neurons subjected to OGD/R. It can be inferred that arbutin could protect against ischemic injuries and stroke. The anti-ischemic activity of arbutin can arrest post-stroke damage to the brain.
Transcription Factor MAFB as a Prognostic Biomarker for the Lung Adenocarcinoma
MAFB is a basic leucine zipper (bZIP) transcription factor specifically expressed in macrophages. We have previously identified MAFB as a candidate marker for tumor-associated macrophages (TAMs) in human and mouse models. Here, we analyzed single-cell sequencing data of patients with lung adenocarcinoma obtained from the GEO database (GSE131907). Analyzed data showed that general macrophage marker CD68 and macrophage scavenger receptor 1 (CD204) were expressed in TAM and lung tissue macrophage clusters, while transcription factor MAFB was expressed specifically in TAM clusters. Clinical records of 120 patients with lung adenocarcinoma stage I (n = 57), II (n = 21), and III (n = 42) were retrieved from Tsukuba Human Tissue Biobank Center (THB) in the University of Tsukuba Hospital, Japan. Tumor tissues from these patients were extracted and stained with anti-human MAFB antibody, and then MAFB-positive cells relative to the tissue area (MAFB+ cells/tissue area) were morphometrically quantified. Our results indicated that higher numbers of MAFB+ cells significantly correlated to increased local lymph node metastasis (nodal involvement), high recurrence rate, poor pathological stage, increased lymphatic permeation, higher vascular invasion, and pleural infiltration. Moreover, increased amounts of MAFB+ cells were related to poor overall survival and disease-free survival, especially in smokers. These data indicate that MAFB may be a suitable prognostic biomarker for smoker lung cancer patients.
Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics
Probiotics have been considered as an economical and safe alternative for the treatment of a large number of chronic diseases and improvement of human health. They are known to modulate the host immunity and protect from several infectious and non-infectious diseases. The colonization, killing of pathogens and induction of host cells are few of the important probiotic attributes which affect several functions of the host. In addition, prebiotics and non-digestible food substances selectively promote the growth of probiotics and human health through nutrient enrichment, and modulation of gut microbiota and immune system. This review highlights the role of probiotics and prebiotics alone and in combination (synbiotics) in the modulation of immune system, treatment of infections, management of inflammatory bowel disease and cancer therapy. Key points • Probiotics and their derivatives against several human diseases. • Prebiotics feed probiotics and induce several functions in the host. • Discovery of novel and biosafe products needs attention for human health.
Albino mice with the point mutation at the tyrosinase locus show high cholesterol diet-induced NASH susceptibility
Non-alcoholic fatty liver disease (NAFLD) constitutes a metabolic disorder with high worldwide prevalence and increasing incidence. The inflammatory progressive state, non-alcoholic steatohepatitis (NASH), leads to liver fibrosis and carcinogenesis. Here, we evaluated whether tyrosinase mutation underlies NASH pathophysiology. Tyrosinase point-mutated B6 (Cg)- Tyr c-2J /J mice (B6 albino) and C57BL/6J black mice (B6 black) were fed with high cholesterol diet (HCD) for 10 weeks. Normal diet-fed mice served as controls. HCD-fed B6 albino exhibited high NASH susceptibility compared to B6 black, a phenotype not previously reported. Liver injury occurred in approximately 50% of B6 albino from one post HCD feeding, with elevated serum alanine aminotransferase and aspartate aminotransferase levels. NASH was induced following 2 weeks in severe-phenotypic B6 albino (sB6), but B6 black exhibited no symptoms, even after 10 weeks. HCD-fed sB6 albino showed significantly higher mortality rate. Histological analysis of the liver revealed significant inflammatory cell and lipid infiltration and severe fibrosis. Serum lipoprotein analysis revealed significantly higher chylomicron and very low-density lipoprotein levels in sB6 albino. Moreover, significantly higher small intestinal lipid absorption and lower fecal lipid excretion occurred together with elevated intestinal NPC1L1 expression. As the tyrosinase point mutation represents the only genetic difference between B6 albino and B6 black, our work will facilitate the identification of susceptible genetic factors for NASH development and expand the understanding of NASH pathophysiology.
Mathematical analysis of the effect of portal vein cells on biliary epithelial cell differentiation through the Delta-Notch signaling pathway
Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation.
Effect of multiple allelic combinations of genes on regulating grain size in rice
The grain size is one of the complex trait of rice yield controlled by a plethora of interaction of several genes in different pathways. The present study was undertaken to investigate the influence of seven known grain size regulating genes: DEP1, GS7, GS3, GW8, GL7, GS5 and GW2. A wide phenotypic variation for grain length, grain width and grain length-width ratio were observed in 89 germplasm. The correlation analysis showed a strong association among these three grain traits viz. GL, GW, GLWR and TGW which play important roles in determining the final rice grain size. Except for GW2, all six genes showed strong association with grain size traits. A total of 21 alleles were identified with an average of 2.1 allele/locus in 89 germplasm of which seven alleles were found to be favourable alleles for improving the grain size with the frequency range of 24 (26.97%) to 82 (92.13%); the largest was found in GS5 followed by GW8, GL7, DEP1, GS3 and GS7 genes. Through ANOVA, four markers (GS3-PstI, S9, GID76 and GID711) of three genes (GS3, DEP1 and GL7) were found significantly associated with all the three traits (GL, GLWR and TGW). Concurrent results of significant associations of grain size traits with other markers were observed in both analysis of variance and genetic association through the general linear model. Besides, the population structure analysis, cluster analysis and PCoA divided the entire germplasm into three sub-groups with the clear-cut demarcation of long and medium grain types. The present results would help in formulating strategies by selecting suitable candidate markers/genes for obtaining preferred grain shape/size and improving grain yield through marker-assisted breeding.
Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review
Cannabidiol (CBD), derived from Cannabis sativa, has gained remarkable attention for its potential therapeutic applications. This thorough analysis explores the increasing significance of CBD in treating neurological conditions including epilepsy, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease, which present major healthcare concerns on a worldwide scale. Despite the lack of available therapies, CBD has been shown to possess a variety of pharmacological effects in preclinical and clinical studies, making it an intriguing competitor. This review brings together the most recent findings on the endocannabinoid and neurotransmitter systems, as well as anti-inflammatory pathways, that underlie CBD’s modes of action. Synthesized efficacy and safety assessments for a range of neurological illnesses are included, covering human trials, in vitro studies, and animal models. The investigation includes how CBD could protect neurons, control neuroinflammation, fend off oxidative stress, and manage neuronal excitability. This study emphasizes existing clinical studies and future possibilities in CBD research, addressing research issues such as regulatory complications and contradicting results, and advocates for further investigation of therapeutic efficacy and ideal dose methodologies. By emphasizing CBD’s potential to improve patient well-being, this investigation presents a revised viewpoint on its suitability as a therapeutic intervention for neurological illnesses.
IL-6/IL-12 superfamily of cytokines and regulatory lymphocytes play critical roles in the etiology and suppression of CNS autoimmune diseases
Cytokines influence cell-fate decisions of naïve lymphocytes and determine outcome of immune responses by transducing signals that regulate the initiation, intensity and duration of immune responses. However, aberrant regulation of physiological levels of cytokines contribute to the development of autoimmune and other inflammatory diseases. The Interleukin 6 (IL-6)/IL-12 superfamily of cytokines have a profound influence on all aspects of host immunity and our focus in this review is on the signaling pathways that mediate their functions, with emphasis on how this enigmatic family of cytokines promote or suppress inflammation depending on the physiological context. We also describe regulatory lymphocyte populations that suppress neuroinflammatory diseases by producing cytokines, such as IL-27 (i27-Breg) or IL-35 (i35-Breg and iT R 35). We conclude with emerging immunotherapies like STAT-specific Nanobodies, Exosomes and Breg therapy that ameliorate CNS autoimmune diseases in preclinical studies.
Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers
Understanding of genetic diversity is important to explore existing gene in any crop breeding program. Most of the diversity preserved in the landraces which are well-known reservoirs of important traits for biotic and abiotic stresses. In the present study, the genetic diversity at twenty-four most significant blast resistance gene loci using twenty-eight gene specific markers were investigated in landraces originated from nine diverse rice ecologies of India. Based on phenotypic evaluation, landraces were classified into three distinct groups: highly resistant (21), moderately resistant (70) and susceptible (70). The landraces harbour a range of five to nineteen genes representing blast resistance allele with the frequency varied from 4.96% to 100%. The cluster analysis grouped entire 161 landraces into two major groups. Population structure along with other parameters was also analyzed to understand the evolution of blast resistance gene in rice. The population structure analysis and principal coordinate analysis classified the landraces into two sub-populations. Analysis of molecular variance showed maximum (93%) diversity within the population and least (7%) between populations. Five markers viz; K3957, Pikh, Pi2-i, RM212and RM302 were strongly associated with blast disease with the phenotypic variance of 1.4% to 7.6%. These resistant landraces will serve as a valuable genetic resource for future genomic studies, host-pathogen interaction, identification of novel R genes and rice improvement strategies.
IL-27-containing exosomes secreted by innate B-1a cells suppress and ameliorate uveitis
IL-27 is a heterodimeric cytokine composed of Ebi3 and IL-27p28 and can exert proinflammatory or immune suppressive effects depending on the physiological context. Ebi3 does not contain membrane-anchoring motifs, suggesting that it is a secreted protein while IL-27p28 is poorly secreted. How IL-27p28 and Ebi3 dimerize to form biologically active IL-27 is unknown. Major impediment to clinical use of IL-27 derives from difficulty of determining exact amount of bioavailable heterodimeric IL-27 needed for therapy. To understand how IL-27 mediates immune suppression, we characterized an innate IL-27-producing B-1a regulatory B cell population (i27-Breg) and mechanisms i27-Bregs utilize to suppress neuroinflammation in mouse model of uveitis. We also investigated biosynthesis of IL-27 and i27-Breg immunobiology by FACS, immunohistochemical and confocal microscopy. Contrary to prevailing view that IL-27 is a soluble cytokine, we show that i27-Bregs express membrane-bound IL-27. Immunohistochemical and confocal analyses co-localized expression of IL-27p28 at the plasma membrane in association with CD81 tetraspanin, a BCR-coreceptor protein and revealed that IL-27p28 is a transmembrane protein in B cells. Most surprising, we found that i27-Bregs secrete IL-27-containing exosomes (i27-exosomes) and adoptive transfer of i27-exosomes suppressed uveitis by antagonizing Th1/Th17 cells, up-regulating inhibitory-receptors associated with T-cell exhaustion while inducing Treg expansion. Use of i27-exosomes thus obviates the IL-27 dosing problem, making it possible to determine bioavailable heterodimeric IL-27 needed for therapy. Moreover, as exosomes readily cross the blood-retina-barrier and no adverse effects were observed in mice treated with i27-exosome, results of this study suggest that i27-exosomes might be a promising therapeutic approach for CNS autoimmune diseases.