Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Manolakos, Dimitris"
Sort by:
Life Cycle Cost Analysis of a Biomass-Driven ORC Cogeneration System for Medical Cannabis Greenhouse Cultivation
by
Tyris, Dimitrios
,
Bilalis, Dimitrios
,
Golonis, Chrysanthos
in
Alternative energy sources
,
Analysis
,
Coalitions
2025
Medical cannabis cultivation requires substantial energy for heating, lighting, and climate control. This study evaluates the economic feasibility of an innovative biomass-fired micro-CHP system in a greenhouse facility for medicinal cannabis cultivation. The system comprises an 80 kWth boiler retrofitted for biomass and a 7 kWel ORC engine and is assessed against a diesel-boiler Business-As-Usual (BAU) benchmark. Thermal load simulations for two growing periods (1 March–30 June and 1 September–30 December) estimate an annual heating demand of 91,065.20 kWhth. The micro-CHP system delivers 8195.87 kWhel per year, exceeding the greenhouse’s 7839.90 kWhel consumption. Over a 30-year lifespan at a 7% discount rate, Life Cycle Costing yields EUR 196,421.33 for micro-CHP versus EUR 229,468.46 for BAU, a 14.4% reduction. Under all-equity financing, the project achieves an NPV of EUR 59,591.88, IRR of 27.32%, and a DPBP of 12.1 years; with 70% debt financing, NPV rises to EUR 61,211.39 and DPBP shortens to 10.5 years. Levelized Cost of Energy (LCOE) and Heat (LCOH) are EUR 0.122 per kWhel and EUR 0.062 per kWhth, respectively. While the LCOE is below the Greek and EU non-household averages (EUR 0.1578 and EUR 0.1515 per kWhel), the LCOH exceeds the corresponding heat price benchmarks (EUR 0.0401 and EUR 0.0535 per kWhth). These results indicate that, in the modeled context, biomass-ORC cogeneration can be a financially attractive and lower-carbon option for medicinal cannabis greenhouse operations.
Journal Article
A Dynamic Heat Pump Model for Indoor Climate Control of a Broiler House
by
Tyris, Dimitrios
,
Gkountas, Apostolos
,
Bakalis, Panteleimon
in
Alternative energy sources
,
animal house environment control
,
Automation
2023
Environment control systems in broiler houses utilize non-renewable electricity and fuels as energy sources, contributing to the increase in greenhouse gases, while not providing optimal conditions. The heat pump (HP) is an energy-efficient technology that can continuously regulate the indoor temperature and relative humidity by combining different operation modes (heating, cooling, and dehumidifying). The current study presents an analytical numerical model developed in Simulink, capable of simulating the thermal loads of a broiler house and the dynamic operation of three heat pumps to cover its needs. Outdoor climatic conditions and broilers’ heat production are used as inputs, while all the heat exchange mechanisms with the external environment are considered. The study investigates the energy use and performance of each HP mode under different environmental conditions. A total of 7 different production periods (PPs) are simulated for a 10,000-broiler house in northern Greece, showing total energy consumption of 18.5 kWh/m2, 43.4 kWh/m2, and 58.7 kWh/m2 for heating, cooling, and dehumidifying, respectively. The seasonal coefficient of performance (SCOP) reaches above 3.1 and 4.8 for heating and dehumidifying, respectively, while the seasonal energy efficiency ratio (SEER) for cooling is above 3.7. Finally, focusing on the two warmer periods, a comparison between cooling with and without evaporative pads was performed, showing similar energy consumption.
Journal Article
Energy Use in Greenhouses in the EU: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption
by
Vandorou, Foteini
,
Papadakis, George
,
Kyriakarakos, George
in
Agricultural production
,
Agriculture
,
Alternative energy sources
2022
This study conducts a review of energy use in the EU greenhouse agriculture sector. The studies presented illustrate that energy use in greenhouses is varied and generally dependent on fossil sources. High energy systems, which are more dominant in northern Europe, are generally heavily climate controlled and energy use is dominated by heating and cooling processes, while low energy systems, which are dominant in southern Europe, show a mixture of energy uses including heating, cooling, irrigation, lighting, fertilisers, and pesticides. Our review also provides a discussion of energy efficiency measures and renewable energy sources adoption for greenhouse production. Finally, our review indicates that accurate and reliable studies on energy use in greenhouse production are scarce and fragmented and that a range of differing methodologies are currently used to estimate on-farm energy use. The development of a comprehensive methodology and categorisation for measuring energy use in greenhouse agricultural production would, in our view, catalyse further studies in this sector, considerably improve our understanding of energy use in greenhouses and support the green transition. Based on this, this paper proposes a basic framework for measuring energy use in greenhouse agriculture.
Journal Article
Energy Use in the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption
by
Tyris, Dimitrios
,
Vandorou, Foteini
,
Papadakis, George
in
Alternative energy sources
,
Emissions
,
Energy consumption
2022
This study conducts a review bringing together data from a large number of studies investigating energy use in EU livestock systems. Such a study has not been conducted previously, and improvements in our understanding of energy use concentrations in livestock systems will aid in developing interventions to achieve the EU’s 2030 and 2050 sustainability targets. The results from the Life Cycle Assessments included in this review indicate that energy use is concentrated in feed, housing, and manure management. In most systems, animal feed is the dominant energy use category. Regarding specific livestock categories, the studies covered indicate that energy use requirements range from 2.1 to 5.3 MJ/kg per ECM for cow milk, 59.2 MJ/kg for a suckler cow–calf, and 43.73 MJ/kg for a dairy bull, 15.9 MJ/kg to 22.7 MJ/kg for pork production, 9.6 MJ/kg to 19.1 MJ/kg for broiler production, 20.5–23.5 MJ/kg for chicken egg production. Our review indicates dominance of and dependence on fossil fuel and discusses the situation and research around transitioning towards renewable energy sources and improving energy efficiency. Our analysis indicates that existing energy use data in livestock systems are fragmented and characterized by multiple methodologies and considerable data gaps. In our view, there is a need for the development of a standardized methodology for measuring energy use in livestock systems, which we consider a necessary step to develop interventions that reduce fossil energy use in livestock systems and its contribution to climatic change.
Journal Article
Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application
2019
Supercritical operation is considered a main technique to achieve higher cycle efficiency in various thermodynamic systems. The present paper is a review of experimental investigations on supercritical operation considering both heat-to-upgraded heat and heat-to-power systems. Experimental works are reported and subsequently analyzed. Main findings can be summarized as: steam Rankine cycles does not show much studies in the literature, transcritical organic Rankine cycles are intensely investigated and few plants are already online, carbon dioxide is considered as a promising fluid for closed Brayton and Rankine cycles but its unique properties call for a new thinking in designing cycle components. Transcritical heat pumps are extensively used in domestic and industrial applications, but supercritical heat pumps with a working fluid other than CO2 are scarce. To increase the adoption rate of supercritical thermodynamic systems further research is needed on the heat transfer behavior and the optimal design of compressors and expanders with special attention to the mechanical integrity.
Journal Article
Modelling and Parametric Analysis of a Brine Treatment Unit Using a High-Temperature Heat Pump and a Vacuum Evaporator
by
Gkountas, Apostolos
,
Bakalis, Panteleimon
,
Ntavou, Erika
in
brine treatment
,
Desalination
,
Efficiency
2022
The brine produced from desalination systems is a highly concentrated mixture, including cleansing chemicals from the water treatment processes that can possibly degrade ecosystems in discharge areas. Evaporation is a widely used method for the treatment of high salinity mixtures; however, it requires careful monitoring of the temperature and pressure in order to protect the equipment from the highly corrosive environment of the brine discharge. The proposed brine treatment system is based on the principle of vacuum evaporation with the use of a high-temperature heat pump, which is classified as “green technology”. In this study, a thermodynamic analysis of a vacuum evaporation system with a nominal freshwater production capacity of 160 L/h has been carried out, employing a numerical tool to model the flash evaporator and the heat pump. The analysis focuses on the parameters that present the most significant impact on the system’s efficiency and water production, such as the recirculation ratio, the set-point temperature of the heat pump and the pressure difference provided by the vacuum pump. The results show that, for the constant vacuum pressure difference, the water production increases with the increase in the set-point temperature and the recirculation ratio, but leads to the reduced COP of the heat pump and to an elevated specific energy consumption. Moreover, it is shown that an increased vacuum pressure difference leads to increased water production, but reduces the COP. Finally, the minimum specific energy consumption of 150 kWh/m3 of produced freshwater can be achieved for a set-point at 75 °C and vacuum of 0.21 bar, leading to a levelized cost of water about 11 €/m3.
Journal Article
Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle
by
Kaya, Alihan
,
Billiet, Marijn
,
Lecompte, Steven
in
experimental research
,
Heat exchangers
,
Heat transfer
2017
In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC) installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T) collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A) in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.
Journal Article
Investigation of the Use of Low Temperature Geothermal Organic Rankine Cycle Engine in an Autonomous Polygeneration Microgrid
by
Ntavou, Erika
,
Kyriakarakos, George
,
Manolakos, Dimitris
in
Agriculture
,
Alternative energy sources
,
Desalination
2020
Low-enthalpy geothermal resources (<150 °C) can be used for electricity generation and are widespread around the world, occurring at shallow depths. At the same time, in many parts of the world, there are existing low-enthalpy geothermal wells that are used for a multitude of applications such as for buildings’ heating and agriculture-related applications. The dominant technology to convert low-grade heat (<150 °C) to electricity is the Organic Rankine Cycle (ORC). The autonomous polygeneration microgrid (APM) concept aims to holistically meet in a sustainable way the needs of an off-grid community in terms of electrical loads, space heating and cooling, potable water production through desalination, and the use of hydrogen as fuel for transportation, in the most cost-effective manner possible. Photovoltaics (PVs) and wind turbines have been investigated extensively, since PVs can be installed practically anywhere in the world and wind turbines in areas with sufficient wind potential. The aim of this paper is to investigate techno-economically the potential of utilizing low-enthalpy geothermal resources in small-scale APMs through an ORC engine to fully satisfy the needs of small settlements. In order to accomplish this task with confidence, a case study for the Greek island of Milos has been developed and a typical settlement has been considered. It is worth mentioning that experimental results from a realized low-power (<10 kWe) ORC engine manufactured to operate at temperatures up to 140 °C are used to add reliability in the calculations. In order to meet the needs of the people, four different APMs based on PVs, wind turbines, and geothermal ORC of different but appropriate configurations were designed and sized through optimization. The optimization process was based on particle swarm optimization (PSO). The comparative examination of the results shows that the use of a low-power, low-temperature ORC engine in an APM is technically feasible; more cost effective than the configurations based on PVs, wind turbines, or combination of both; and has increased environmental sustainability.
Journal Article
Bibliometric analysis of the evolution of biochar research trends and scientific production
by
Oukarroum Abdallah
,
Abdeljaoued Emna
,
Manolakos Dimitris
in
Academic careers
,
Bibliometrics
,
Charcoal
2020
Biochar has caught great attention over the last decade, yielding a large number of publications in a broad range of disciplines. This scientometric study produces a combined qualitative–quantitative assessment of 10,000 publications recorded in the period 2005–2019 in the Web of Science (WoS) database, based on innovative methods and indicators, and focusing in particular on biochar production and valorization pathways. The cumulated number of publications was analyzed with power and logistic models, and the economic indicator CAGR (Compound Annual Growth Rate) for the estimation of future academic output. Mapping of the evolution of academic output revealed the worldwide diffusion of academic production toward many countries and continents. According to the analysis of collaboration networks of most productive countries, the development of academic output may be linked to high levels of international collaboration, as well as the diversity of these networks. Furthermore, the rise of academic output in the African continent may preclude an evolution toward a multipolar academic world. The average number of citations per paper at both author level (number of citations/number of papers) and journal level (total citations/total papers) was found to be a useful indicator of scientific productivity. In particular, academic journals with impact factors as low as 2.5–3 still ranked high on this criterion, revealing their high impact on academic research in the biochar sector. Finally, the analysis of targeted keywords co-occurrences emphasized the diversification of research on biochar applications, from its initial use as soil improver toward engineered biochar for versatile applications.Graphic abstract
Journal Article
Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption
2021
Parkinson’s disease and related synucleinopathies are characterized by the abnormal accumulation of alpha-synuclein aggregates, loss of dopaminergic neurons, and gliosis of the substantia nigra. Although clinical evidence and in vitro studies indicate disruption of the Blood-Brain Barrier in Parkinson’s disease, the mechanisms mediating the endothelial dysfunction is not well understood. Here we leveraged the Organs-on-Chips technology to develop a human Brain-Chip representative of the substantia nigra area of the brain containing dopaminergic neurons, astrocytes, microglia, pericytes, and microvascular brain endothelial cells, cultured under fluid flow. Our αSyn fibril-induced model was capable of reproducing several key aspects of Parkinson’s disease, including accumulation of phosphorylated αSyn (pSer129-αSyn), mitochondrial impairment, neuroinflammation, and compromised barrier function. This model may enable research into the dynamics of cell-cell interactions in human synucleinopathies and serve as a testing platform for target identification and validation of novel therapeutics.
Cellular models of organs have been used to investigate mechanisms of disease. Here the authors generate a human alpha synuclein-induced brain-chip model that recapitulates blood-brain barrier dysfunction, as a potential testing platform for novel therapeutics in Parkinson’s disease.
Journal Article