Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Mansour, Hayam"
Sort by:
Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes
Combining experimental and simulation strategies to facilitate the design and operation of nucleic acid hybridization probes are highly important to both fundamental DNA nanotechnology and diverse biological/biomedical applications. Herein, we introduce a DNA equalizer gate (DEG) approach, a class of simulation-guided nucleic acid hybridization probes that drastically expand detection windows for discriminating single nucleotide variants in double-stranded DNA (dsDNA) via the user-definable transformation of the quantitative relationship between the detection signal and target concentrations. A thermodynamic-driven theoretical model was also developed, which quantitatively simulates and predicts the performance of DEG. The effectiveness of DEG for expanding detection windows and improving sequence selectivity was demonstrated both in silico and experimentally. As DEG acts directly on dsDNA, it is readily adaptable to nucleic acid amplification techniques, such as polymerase chain reaction (PCR). The practical usefulness of DEG was demonstrated through the simultaneous detection of infections and the screening of drug-resistance in clinical parasitic worm samples collected from rural areas of Honduras. The design of nucleic acid hybridisation probes is important for their use in DNA nanotechnology and biomedical applications. Here the authors use a DNA equalizer gate approach that expands the detection windows for improved sequence selectivity.
Phenolic-rich fraction of green tea attenuates histamine-mediated cardiopulmonary toxicity by inhibiting Cox-2/NF-κB signaling pathway and regulating oxidant/antioxidant balance
Background Histamine (HIS) has a substantial impact on the development of numerous allergic disorders including asthma. Antihistamines mostly target histamine receptor-1 alone, so it is not entirely effective in the treatment of allergic diseases. In the current investigation, we examine the growing evidence for novel therapeutic strategies that aim to treat histamine-mediated cardiopulmonary toxicity with the phenolic-rich fraction of green tea (PRFGT). Results Our findings demonstrated that weekly ingestion of HIS to rats induced oxidant/antioxidant imbalance in both lung and heart homogenates. The histopathological examination demonstrated extensive interstitial pneumonia with progressive alveolar and bronchial damage in HIS receiving groups. Heart sections showed severe myocardial necrosis and hemorrhage. All lesions were confirmed by the immunohistochemical staining that demonstrated strong caspase-3, cyclooxygenase-2 (Cox-2), and tumor necrosis factor-α (TNF-α) protein expressions along with upregulation of the pulmonary m-RNA expression of TNF-α, nuclear factor kappa-B (NF-κB), and interleukin-1β (IL-1β) genes and cardiac levels of many apoptotic genes. Otherwise, the pretreatment of rats with PRFGT had the ability to alleviate all the aforementioned toxicological parameters and return the microscopic picture of both lung and heart sections to normal histology. Conclusions We concluded that PRFGT’s powerful antioxidant, anti-inflammatory, and anti-apoptotic properties can reduce cardiopulmonary toxicity caused by HIS. We recommended daily intake of green tea as a beverage or adding it to foods containing elevated levels of HIS to prevent its possible toxicity.
Effect of zinc oxide or selenium nanoparticles on body weight, growth related genes and physiology in Baladi goats
Enhancing meat production is essential to meet the rising global demand for animal protein, improve food security, and support sustainable agriculture. This study evaluated the effects of zinc oxide (ZnO) and selenium (Se), each administered individually in conventional or nanoparticle (NP) forms on growth of Egyptian Baladi goats. Twenty-two pregnant Egyptian Baladi goats were divided into five groups, each receiving a different treatment via drinking water: 150 mg ZnO, 15 mg ZnO-NPs, 0.3 mg Se, or 0.03 mg Se-NPs. The control group received unsupplemented water. Treatments began 30 days before parturition and continued until weaning (90 days postpartum). Body weight, expression of GH, IGF-1, and leptin genes, along with physiological parameters, were evaluated. Goats receiving either ZnO-NPs or Se-NPs had significantly higher body weights at parturition and greater weight gain from birth to weaning than those in the conventional elements and control groups. Suckling kids from ZnO-NP or Se-NP-treated goats showed significantly higher birth and weaning weights, total body gain, and daily weight gain ( P  < 0.001), particularly in the ZnO-NP group. Gene expression analysis revealed upregulated GH and IGF-1 and leptin expression in ZnO-NP- and Se-NP-treated goats, with the highest levels observed in the Se-NPs group. Physiological analysis showed protein and esterase isoenzyme pattern changes in ZnO-treated goats, while Se caused no alterations. Neither ZnO nor Se affected catalase, peroxidase or α-amylase activity. These findings highlight the potential of ZnO-NPs and Se-NPs as effective and safe nutritional supplements for improving livestock productivity.
Occurrence, Antimicrobial Susceptibility and Phylogroups of Escherichia coli O157:H7 Isolated from Food Outlets in Some Touristic Cities in Egypt
ABSTRACT Foodborne illnesses are frequently caused by Escherichia coli (E. coli). E. coli O157 is regarded as a potentially harmful cause of gastrointestinal disorders associated with consumption of foods with animal origin. Therefore, this study was conducted to determine the presence of E. coli O157:H7 in food outlets in some touristic cities in Egypt. For this purpose, 648 samples including raw chicken meat, cooked chicken meat, raw beef meat, cooked beef meat, food handlers and equipment swabs were collected from 54 food outlets in some touristic cities in Egypt. E. coli O157 was 1.1% (7/648) and 1.2% (5/432) in all examined samples and food samples respectively. Cooked chicken samples were the most contaminated with E. coli O157:H7 with an overall prevalence of 1.9% (2/108). The highest prevalence of E. coli O157:H7 (8.3%) isolates was recovered from raw chicken and cooked beef meat in Hurghada Governorate followed by Luxor Governorate (6.3%). There is no E. coli O157:H7 isolates were identified in Sharm El Sheikh and Aswan governorates. All E. coli O157:H7 isolates (100%) showed resistance to ampicillin (AMP), cefixime, ciprofloxacin and cotrimoxazole. Multidrug resistance (MDR) was observed among all E. coli O157:H7 isolates. All E. coli O157:H7 isolates harbor the eae gene with complete absence of stx1 gene. The most prevalent phylogroup among the E. coli O157:H7 strains was B2 identified in raw and cooked beef and cooked chicken, collected from Luxor, Hurghada, and Alexandria governorates, respectively. Whereas, D phylogenetic group E. coli O157:H7 was only found in raw chicken sample collected from Hurghada Governorate. In conclusion, the detection of pathogenic MDR E. coli O157:H7 in food samples, food handlers and food equipment in some touristic cities in Egypt poses a serious risk to public health. Therefore, it is recommended to focus on identifying practices which increase the risk of food contamination, and on implementing measures to improve the sanitary conditions in the food outlets in touristic cities.
In Vitro Evaluation of Sugar-Conjugated Thienopyrimidinone Derivatives with Possible Neuroprotective and Antioxidant Effects
A series of glycosylated thienopyrimidinone derivatives (7a–e and 8a–e), previously synthesized through a multi-step sequence involving a Gewald reaction, thiocyanate cyclization, functionalization with chloroacetic acid, and subsequent coupling with aldose sugars (glucose, mannose, galactose, xylose, and arabinose), were subjected to comprehensive biological evaluation. Structural confirmation of all compounds was achieved by spectroscopic and elemental analyses. Among them, compound 8e displayed remarkable antioxidant capacity, with radical scavenging activity surpassing standard controls, and demonstrated significant neuroprotective potential through its ability to attenuate oxidative stress, a key driver of neurodegeneration. Furthermore, 8e exhibited notable anti-arthritic and anti-diabetic effects, which may indirectly enhance neuroprotection by alleviating systemic inflammation and metabolic dysfunction—recognized risk factors for neurodegenerative disorders. Molecular docking and molecular dynamics studies revealed favorable binding interactions and structural stability of 8e with multiple biological targets, supporting its promise as a multifunctional neuroprotective candidate against oxidative stress and neurodegeneration.
The Association of Toll-like Receptor-9 Gene Single-Nucleotide Polymorphism and AK155(IL-26) Serum Levels with Chronic Obstructive Pulmonary Disease Exacerbation Risk: A Case-Controlled Study with Bioinformatics Analysis
Background: A crucial challenge is the determination of chronic obstructive pulmonary disease (COPD) immune-related mechanisms, where one of the important components of the inflammatory axes in COPD is Toll-like receptor-9 (TLR9) and interleukin-26 AK155(IL-26). Aim: To examine the relation between TLR9 (T1237C) SNP rs5743836 and serum levels of AK155(IL-26) with the exacerbation of COPD. Subjects: A total of 96 COPD patients sub-classified into two groups. Materials: DNA was purified from blood samples of stable COPD patients (n = 48) vs. exacerbated COPD patients (n = 48) as well as 42 age- and sex-matched healthy smokers and passive smokers as a control group. Methods: Genotyping for TLR9 rs5743836 (T1237C) polymorphism was performed using real time polymerase chain reaction (RT-PCR). AK155(IL-26) serum levels were determined using ELISA. Results: There is a significantly higher frequency of the mutant homozygous genotype (C/C) and the mutated C allele of TLR9 rs5743836 (T1237C) in COPD patients and in the exacerbated group when compared with the control group and stable COPD patients, respectively, with OR 31.98, 1.8 to 57.7, and OR 3.64, 0.98 to 13.36, respectively. For the mutated C allele, the OR was 3.57, 1.94 to 6.56, p = 0.001, OR 1.83, 1.02 to 3.27, p = 0.041, respectively. In the exacerbated COPD group, there was a significant association between TLR9 rs5743836 SNP and BMI and the lung vital function measures, CRP, and AK155(IL-26). The exacerbated COPD group has higher serum levels of AK155(IL-26) compared with the stable group or when compared with the control group (p = 0.001) for both. AK155(IL-26) serum levels have a positive significant correlation with CRP and BMI and a significant negative correlation with FEV1% and FEV1/FVC in exacerbated COPD patients. Conclusions: Our results demonstrated a relation linking TLR-9 rs5743836 (T1237C) expression and the risk of COPD development and its exacerbation, indicating that dysfunctional polymorphisms of the innate immune genes can affect COPD development and its exacerbation. AK155(IL-26) upregulation was related to decreased lung functionality, systematic inflammatory disease, and COPD exacerbation.
Serum vaspin: as a predictor of ischemic heart disease in Egyptian hemodialysis patients
Background Vaspin is a compensatory adipokine with anti-inflammatory properties that can improve insulin sensitivity and plays a cardioprotective role. Aim The aim of this study was to evaluate the level of vaspin in patients with end-stage renal disease on hemodialysis (HD) and to determine whether it has any relation to the presence of ischemic heart disease (IHD) in these patients. Patients and methods The study was carried out on 45 HD patients who were divided into 15 patients with risk factors of developing IHD (group I) and 30 patients (group II) proved to have IHD by echocardiography and ECG compared with 20 healthy individuals (group III). Results We found that the mean±SD of serum vaspin was significantly lower in HD patients with IHD (0.57±0.27) ng/ml compared with the control group (0.74±0.20) ng/ml and there was a negative correlation between serum vaspin and serum creatinine in group I and group II. Also, an receiver operating characteristics study for patients with IHD (group II) yielded a vaspin cut-off value of 0.410 ng/ml with a sensitivity of 40%, a specificity of 100%, a positive predictive value of 100%, and an negative predictive value of 53%, whereas the cut-off value for serum vaspin was 0.485 ng/ ml in patients at risk of developing IHD, with a sensitivity of 100%, a specificity of 85%, a positive predictive value of 83%, and an negative predictive value of 100%. Conclusion Lower vaspin level is associated independently with IHD in HD patients and can be used as a predictor of IHD in patients with end-stage renal disease.
Clinical evaluation of acute kidney injury in Al-Zahraa University Hospital, Cairo, Egypt
Background Acute kidney injury (AKI) is a very common problem. Early detection of injury with initiation of appropriate supportive care remains the mainstay of therapy. Aim The aim of the present study was to evaluate the incidence, etiology, prognosis, treatment, and outcome of AKI. Patients and methods This was a prospective, observational study of 212 patients (137 men and 75 women) who were admitted in all departments of Al-Zahraa University Hospital with AKI during the period from October 2014 to October 2015. Their ages ranged from 22 to 85 years. We included adults aged more than 18 years who presented with AKI, and we excluded patients on regular dialysis. Serum creatinine, sodium, potassium, urea, calcium, phosphorus and uric acid, complete blood count, pelviabdominal ultrasound, and daily measurement of urine output (UOP) were done. AKI patients were classified according to the RIFLE and Acute Kidney Injury Network staging. Result According to the RIFLE criteria, the number of risk, injury, failure, loss, and end-stage renal disease patients were 55 (25.9%), 62 (29.24%), 33 (15.56%), 38 (17.92%), and 24 (11.32%), respectively. According to the Acute Kidney Injury Network staging system, the number of stages I, II, and III patients were 61 (28.7%), 50 (23.5%), and 101 (47.6%), respectively. The length of hospital stay was significantly associated with severity of AKI. The main cause of AKI was dehydration in 82 (38.7%) patients and sepsis in 71 (33.5%). Oliguric patients were 147 (69.34%) and nonoliguric were 65 (30.66%). Moreover, prognosis of patients was complete recovery in 95 (44.81%), partial recovery in 81 (38.21%), and no recovery in 36 (16.98%). Conclusion AKI was more common among patients in ICU than those in any other department. Dehydration and sepsis were its leading causes.
Polymorphisms and expressions of ADSL, MC4R and CAPN1 genes and their effects on economic traits in Egyptian chicken breeds
In recent years, strategic plans for poultry production have emphasized quantitative traits, particularly body weight and carcass traits (meat yield), in response to overpopulation challenges. Candidate genes such as adenylosuccinate lyase (ADSL), melanocortin-4-receptor (MC4R), and calpain 1 (CAPN1) have played vital roles in this context due to their associations with muscle growth and body composition. This study aims to investigate the influence of polymorphisms and gene expressions of the aforementioned genes on body weight (BW), growth rate (GR), breast weight (BrW), and thigh weight (TW) across four distinct chicken breeds: Fayoumi, Matrouh, Mamourah, and Leghorn. The use of PCR-SSCP analysis revealed genetic polymorphisms through the identification of various patterns (genotypes) within the three examined genes. The ADSL, MC4R, and CAPN1 genes exhibited five, three, and two different genotypes, respectively. These polymorphisms displayed promising connections with enhancing economically significant production traits, particularly BW, BrW and TW. Furthermore, gene expression analyses were conducted on breast and thigh tissues obtained from the chicken breeds at 60 days of age, where ADSL and MC4R exhibited a noteworthy up-regulation in Fayoumi and Matrouh breeds, and down-regulation in Mamourah and Leghorn. In contrast, CAPN1 expression decreased across most breeds with a slight increase noted in Fayoumi breed. In conclusion, this investigation underscores the substantial impact of ADSL, MC4R, and CAPN1 genes on economically important production traits within Egyptian domestic chicken breeds. Consequently, these genes emerge as significant molecular markers, holding potential utility in avian selection and breeding programs aimed at enhancing productive performance.