Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
32 result(s) for "Marçais, Antoine"
Sort by:
The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells
The kinase mTOR is important in lymphocyte bioenergetics but has not been examined in natural killer cells. Walzer and colleagues demonstrate that mTOR is key to sustaining the proliferation and effector function of these cells. Interleukin 15 (IL-15) controls both the homeostasis and the peripheral activation of natural killer (NK) cells. The molecular basis for this duality of action remains unknown. Here we found that the metabolic checkpoint kinase mTOR was activated and boosted bioenergetic metabolism after exposure of NK cells to high concentrations of IL-15, whereas low doses of IL-15 triggered only phosphorylation of the transcription factor STAT5. mTOR stimulated the growth and nutrient uptake of NK cells and positively fed back on the receptor for IL-15. This process was essential for sustaining NK cell proliferation during development and the acquisition of cytolytic potential during inflammation or viral infection. The mTORC1 inhibitor rapamycin inhibited NK cell cytotoxicity both in mice and humans; this probably contributes to the immunosuppressive activity of this drug in different clinical settings.
Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants
Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of β2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection. ‘Missing self’ is a mode of natural killer (NK) cell activation aimed to detect the lack of HLA-I molecules on infected or neoplastic cells. Here, the authors show that mismatch between donor HLA-I and cognate receptors on recipient NK cells mediates microvascular inflammation-associated graft rejection, a pathology that is preventable by mTOR inhibition.
An immunosuppressive pathway for tumor progression
An active immunosuppressive pathway is identified in colon cancer that confers immune evasion by the cancer and can be targeted to synergize with immunotherapies.
Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion
Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.
High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors
NK cell education is the process through which chronic engagement of inhibitory NK cell receptors by self MHC-I molecules preserves cellular responsiveness. The molecular mechanisms responsible for NK cell education remain unclear. Here, we show that mouse NK cell education is associated with a higher basal activity of the mTOR/Akt pathway, commensurate to the number of educating receptors. This higher activity was dependent on the SHP-1 phosphatase and essential for the improved responsiveness of reactive NK cells. Upon stimulation, the mTOR/Akt pathway amplified signaling through activating NK cell receptors by enhancing calcium flux and LFA-1 integrin activation. Pharmacological inhibition of mTOR resulted in a proportional decrease in NK cell reactivity. Reciprocally, acute cytokine stimulation restored reactivity of hyporesponsive NK cells through mTOR activation. These results demonstrate that mTOR acts as a molecular rheostat of NK cell reactivity controlled by educating receptors and uncover how cytokine stimulation overcomes NK cell education. The cells of the immune system patrol the body to detect and destroy harmful microbes and diseased cells. Natural killer cells are immune cells with a natural capacity to kill infected or cancerous cells, as their name suggests. Importantly, they do so while sparing the surrounding healthy cells. As natural killer cells mature they go through an “education” process to learn to distinguish between normal and abnormal cells. During education, the natural killer cells interact continuously with nearby healthy cells. However, it remains unknown how these interactions change the natural killer cells, or how these changes control their killing activity. Marçais et al. now show that a protein called mTOR is essential to the education of natural killer cells. Comparing natural killer cells that had or had not completed the education process revealed that mTOR is more active in the educated cells. Moreover, inhibiting the activity of mTOR caused educated natural killer cells to lose their ability to identify diseased cells, while stimulating mTOR activity in uneducated natural killer cells mimicked the education process, allowing them to recognize and eliminate diseased host cells. Certain nutrients are known to control the activity of mTOR, which suggests these nutrients could also affect how natural killer cells develop. In addition, manipulating the activity of mTOR could be used to control the response of natural killer cells to diseased host cells, and so could form part of treatments for cancer and infectious diseases. However, given that mTOR plays numerous roles within different body cells, any potential therapies that are developed would need to be able to manipulate mTOR specifically in natural killer cells.
Regulation of Mouse NK Cell Development and Function by Cytokines
Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations.
Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1+ T cell development
T cell development proceeds under the influence of a network of transcription factors (TFs). The precise role of Zeb1, a member of this network, remains unclear. Here, we report that Zeb1 expression is induced early during T cell development in CD4−CD8− double-negative (DN) stage 2 (DN2). Zeb1 expression was further increased in the CD4+CD8+ double-positive (DP) stage before decreasing in more mature T cell subsets. We performed an exhaustive characterization of T cells in Cellophane mice that bear Zeb1 hypomorphic mutations. The Zeb1 mutation profoundly affected all thymic subsets, especially DN2 and DP cells. Zeb1 promoted the survival and proliferation of both cell populations in a cell-intrinsic manner. In the periphery of Cellophane mice, the number of conventional T cells was near normal, but invariant NKT cells, NK1.1+ γδ T cells and Ly49+ CD8 T cells were virtually absent. This suggested that Zeb1 regulates the development of unconventional T cell types from DP progenitors. A transcriptomic analysis of WT and Cellophane DP cells revealed that Zeb1 regulated the expression of multiple genes involved in the cell cycle and TCR signaling, which possibly occurred in cooperation with Tcf1 and Heb. Indeed, Cellophane DP cells displayed stronger signaling than WT DP cells upon TCR engagement in terms of the calcium response, phosphorylation events, and expression of early genes. Thus, Zeb1 is a key regulator of the cell cycle and TCR signaling during thymic T cell development. We propose that thymocyte selection is perturbed in Zeb1-mutated mice in a way that does not allow the survival of unconventional T cell subsets.
Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells
The control of cellular metabolism is now recognized as key to regulate functional properties of immune effectors such as T or Natural Killer (NK) cells. During persistent infections or in the tumor microenvironment, multiple metabolic changes have been highlighted in T cells that contribute to their dysfunctional state or exhaustion. NK cells may also undergo major phenotypic and functional modifications when infiltrating tumors that could be linked to metabolic alterations. The mammalian target of rapamycin (mTOR) kinase is a central regulator of cellular metabolism. mTOR integrates various extrinsic growth or immune signals and modulates metabolic pathways to fulfill cellular bioenergetics needs. mTOR also regulates transcription and translation thereby adapting cellular pathways to the growth or activation signals that are received. Here, we review the role and regulation of mTOR in NK cells, with a special focus on cytokines that target mTOR such as IL-15 and TGF-β. We also discuss how NK cell metabolic activity could be enhanced or modulated to improve their effector anti-tumor functions in clinical settings.
One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy
Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells and can limit MM growth . Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly or in preclinical models and supporting evidence of their effect in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib-lenalidomide-dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells . Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.