Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
258 result(s) for "Marchetti, Fabio"
Sort by:
Recent Advances in the Chemistry of Metal Carbamates
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se)
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO)μ-CN(Me)(R)]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO)μ-CN(Me)(R)] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO)μ-CN(Me)(CH2Ph)], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO)μ-CNMe(R)], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO)μ-CN(Me)(Xyl)], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO)μ-CN(Me)(Xyl)], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the NCSe- fragment.
A Comprehensive Analysis of the Metal–Nitrile Bonding in an Organo-Diiron System
Nitriles (N≡CR) are ubiquitous in coordination chemistry, yet literature studies on metal–nitrile bonding based on a multi-technique approach are rare. We selected an easily-available di-organoiron framework, containing both π-acceptor (CO, aminocarbyne) and donor (Cp = η5−C5H5) ligands, as a suitable system to provide a comprehensive description of the iron–nitrile bond. Thus, the new nitrile (2–12)CF3SO3 and the related imine/amine complexes (8–9)CF3SO3 were synthesized in 58–83% yields from the respective tris-carbonyl precursors (1a–d)CF3SO3, using the TMNO strategy (TMNO = trimethylamine-N-oxide). The products were fully characterized by elemental analysis, IR (solution and solid state) and multinuclear NMR spectroscopy. In addition, the structures of (2)CF3SO3, (3)CF3SO3, (5)CF3SO3 and (11)CF3SO3 were ascertained by single crystal X-ray diffraction. Salient spectroscopic data of the nitrile complexes are coherent with the scale of electron-donor power of the R substituents; otherwise, this scale does not match the degree of Fe → N π-back-donation and the Fe–N bond energies, which were elucidated in (2–7)CF3SO3 by DFT calculations.
Copper and Zinc Metal–Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram− Bacterial Strains
Here, we report a new synthetic protocol based on microwave-assisted synthesis (MAS) for the preparation of higher yields of zinc and copper in MOFs based on different bis(pyrazolyl)-tagged ligands ([M(BPZ)]n where M = Zn(II), Cu(II), H2BPZ = 4,4′-bipyrazole, [M(BPZ-NH2)]n where M = Zn(II), Cu(II); H2BPZ-NH2 = 3-amino-4,4′-bipyrazole, and [Mx(Me4BPZPh)] where M = Zn(II), x = 1; Cu(II), x = 2; H2Me4BPZPh = bis-4′-(3′,5′-dimethyl)-pyrazolylbenzene) and, for the first time, a detailed study of their antibacterial activity, tested against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, as representative agents of infections. The results show that all MOFs exert a broad-spectrum activity and strong efficiency in bacterial growth inhibition, with a mechanism of action based on the surface contact of MOF particles with bacterial cells through the so-called “chelation effect” and reactive oxygen species (ROS) generation, without a significant release of Zn(II) and Cu(II) ions. In addition, morphological changes were elucidated by using a scanning electron microscope (SEM) and bacterial cell damage was further confirmed by a confocal laser scanning microscopy (CLSM) test.
Aluminium 8-Hydroxyquinolinate N-Oxide as a Precursor to Heterometallic Aluminium–Lanthanide Complexes
A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometallic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms bridging the two metal atoms. While the europium and gadolinium complexes show the coordination number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion, only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3] with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature. Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the different behaviour in terms of the Lewis acidity of the metal centre.
trans-Dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) Complexes: In Search of New Scaffolds to Circumvent Cisplatin Resistance
The high incidence of the resistance phenomenon represents one of the most important limitations to the clinical usefulness of cisplatin as an anticancer drug. Notwithstanding the considerable efforts to solve this problem, the circumvention of cisplatin resistance remains a challenge in the treatment of cancer. In this work, the synthesis and characterization of two trans-dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) complexes (1 and 2) were described. The trypan blue exclusion assay demonstrated an interesting antiproliferative effect for complex 1 in ovarian carcinoma-resistant cells, A2780cis. Quantitative analysis performed by ICP-AES demonstrated a scarce ability to platinate DNA, and a significant intracellular accumulation. The investigation of the mechanism of action highlighted the ability of 1 to inhibit the relaxation of supercoiled plasmid DNA mediated by topoisomerase II and to stabilize the cleavable complex. Cytofluorimetric analyses indicated the activation of the apoptotic pathway and the mitochondrial membrane depolarization. Therefore, topoisomerase II and mitochondria could represent possible intracellular targets. The biological properties of 1 and 2 were compared to those of the related trans-dichloro(triphenylphosphino)(N,N-dialkylamino)platinum(II) complexes in order to draw structure–activity relationships useful to face the resistance phenotype.
Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands
We conducted a joint synthetic, spectroscopic and computational study to explore the reactivity towards cyanide (from Bu4NCN) of a series of dinuclear complexes based on the M2Cp2(CO)3 scaffold (M = Fe, Ru; Cp = η5-C5H5), namely [M2Cp2(CO)2(µ-CO)µ,η1:η2-CH=C=CMe2]BF4 (1Fe-Ru), [Ru2Cp2(CO)2(µ-CO)µ,η1:η2-C(Ph)=CHPh]BF4 (2Ru) and [M2Cp2(CO)2(µ-CO)µ-CN(Me)(R)]CF3SO3 (3Fe-Ru). While the reaction of 1Fe with Bu4NCN resulted in prevalent allenyl deprotonation, preliminary CO-NCMe substitution in 1Ru enabled cyanide addition to both the allenyl ligand (resulting in the formation of a h1:h2-allene derivative, 5A) and the two metal centers (affording 5B1 and 5B2). The mixture of 5B1-2 was rapidly converted into 5A in heptane solution at 100 °C, with 5A being isolated with a total yield of 60%. Following carbonyl-chloride substitution in 2Ru, CN− was incorporated as a terminal ligand upon Cl− displacement, to give the alkenyl complex 6 (84%). The reactivity of 3Fe and 3Ru is strongly influenced by both the metal element, M, and the aminocarbyne substituent, R. Thus, 7aRu was obtained with a 74% yield from cyanide attack on the carbyne in 3aRu (R = Cy, cyclohexyl), whereas the reaction involving the diiron counterpart 3aFe yielded an unclean mixture of the metastable 7aFe and the CO/CN− substitution product 8aFe. The cyano-alkylidene complexes 7aRu (R = Cy) and 7bFe (R = Me) underwent CO loss and carbene to carbyne conversion in isopropanol at 60–80 °C, giving 8aRu (48%) and 8bFe (71%), respectively. The novel compounds 5A, 5B1-2, 6 and 7aRu were characterized by IR and NMR spectroscopy, with the structure of 7aRu further elucidated by single crystal X-ray diffraction analysis. Additionally, the DFT-optimized structures of potential isomers of 5A, 5B1-2 and 6 were calculated.
Mono-, Di- and Tetra-iron Complexes with Selenium or Sulphur Functionalized Vinyliminium Ligands: Synthesis, Structural Characterization and Antiproliferative Activity
A series of diiron/tetrairon compounds containing a S- or a Se-function (2a–d, 4a–d, 5a–b, 6), and the monoiron [FeCp(CO)SeC1(NMe2)C2HC3(Me)] (3) were prepared from the diiron μ-vinyliminium precursors [Fe2Cp2(CO)( μ-CO)μ-η1: η3-C3(R’)C2HC1N(Me)(R)]CF3SO3 (R = R’ = Me, 1a; R = 2,6-C6H3Me2 = Xyl, R’ = Ph, 1b; R = Xyl, R’ = CH2OH, 1c), via treatment with S8 or gray selenium. The new compounds were characterized by elemental analysis, IR and multinuclear NMR spectroscopy, and structural aspects were further elucidated by DFT calculations. The unprecedented metallacyclic structure of 3 was ascertained by single crystal X-ray diffraction. The air-stable compounds (3, 4a–d, 5a–b, 6) display fair to good stability in aqueous media, and thus were assessed for their cytotoxic activity towards A2780, A2780cisR, and HEK-293 cell lines. Cyclic voltammetry, ROS production and NADH oxidation studies were carried out on selected compounds to give insights into their mode of action.
Multimodal Antibacterial Platform Constructed by the Schottky Junction of Curcumin‐Based Bio Metal–Organic Frameworks and Ti3C2Tx MXene Nanosheets for Efficient Wound Healing
A novel multimodal antibacterial platform is constructed by the in situ growth of a bioactive zinc‐based metal–organic framework (Zn‐MOF) using the natural antibacterial agent (curcumin) as ligand over the Ti3C2Tx nanosheets (NSs) for highly effective bacteria‐infected wound healing. As Zn nodes in Zn‐MOF can be partially exchanged by Ti sites in Ti3C2Tx NSs, a novel oxygen vacancy‐rich Schottky junction is formed at the interface between Zn‐MOF and Ti3C2Tx NSs, which can remarkably improve the separation and electron transfer efficiency of photoinduced carriers under near‐infrared light irradiation (808 nm). Consequently, it affords the Zn‐MOF@Ti3C2Tx Schottky junction abundant superoxide radicals (•O2−) and hydroxyl radicals (•OH) by electron transfer via type I mechanism and singlet oxygen (1O2) by energy transfer via type II mechanism, accompanying the superior photothermal performance and controllable release of Zn2+ ions and curcumin. The Zn‐MOF@Ti3C2Tx shows excellent biocompatibility and multimodal antibacterial ability toward Staphylococcus aureus and Escherichia coli. Based on the detailed investigations of the antibacterial mechanism, the Zn‐MOF@Ti3C2Tx Schottky junction remarkably demonstrates accelerated wound healing (wound closure ratio is >99%) infected by S. aureus. A multimodal antibacterial platform based on a novel Schottky barrier junction is designed and constructed for bacterium‐infected wound healing via the synergistic antibacterial mechanism of PTT/PDT and release of metal ions and antibiotics. The Zn‐metal–organic framework (MOF)@Ti3C2Tx can efficiently reduce the needed dosage of antibacterial agent, affording excellent healing ability, low biotoxicity, and enhanced wound healing effect.
Anticancer Diiron Vinyliminium Complexes: A Structure–Activity Relationship Study
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO)μ-η1:η3-C(R′)C(R″)CN(R)(Y)]CF3SO3 (2–7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69–95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R′ = R″ = Me) and 3a (R = CH2CH=CH2, Y = R′ = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV–Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol–water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2–7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R′ = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).