Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
310 result(s) for "Marcus, Colin"
Sort by:
Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets
Magnetic oxides exhibit rich fundamental physics1–4 and technologically desirable properties for spin-based memory, logic and signal transmission5–7. Recently, spin–orbit-induced spin transport phenomena have been realized in insulating magnetic oxides by using proximate heavy metal layers such as platinum8–10. In their metallic ferromagnet counterparts, such interfaces also give rise to a Dzyaloshinskii–Moriya interaction11–13 that can stabilize homochiral domain walls and skyrmions with efficient current-driven dynamics. However, chiral magnetism in centrosymmetric oxides has not yet been observed. Here we discover chiral magnetism that allows for pure spin-current-driven domain wall motion in the most ubiquitous class of magnetic oxides, ferrimagnetic iron garnets. We show that epitaxial rare-earth iron garnet films with perpendicular magnetic anisotropy exhibit homochiral Néel domain walls that can be propelled faster than 800 m s−1 by spin current from an adjacent platinum layer. We find that, despite the relatively small interfacial Dzyaloshinskii–Moriya interaction, very high velocities can be attained due to the antiferromagnetic spin dynamics associated with ferrimagnetic order.Spin currents from an adjacent Pt layer can drive homochiral Néel domain walls in centrosymmetric rare-earth iron garnet films at more than 800 m s–1, taking advantage of the antiferromagnetic spin dynamics of the ferrimagnetic oxide.
A Dynamic Ultrasound Phantom with Tissue‐Mimicking Mechanical and Acoustic Properties
Tissue‐mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue‐mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a novel sacrificial core to fabricate a hollow, ellipsoid‐shaped bladder phantom complete with inlet and outlet tubes, which allow liquids to flow through and expand this phantom, is adopted. This dynamic bladder phantom with realistic mechanical and acoustic properties to human tissues in combination with the developed skin, soft tissue, and subcutaneous adipose tissue TMMs, culminates in a human scale torso tank and electro‐mechanical system that can be systematically utilized for characterizing various medical imaging devices. Various tissue‐mimicking materials (TMMs) for emulating the mechanical and acoustic properties of human bladder muscle, subcutaneous adipose tissue, skin, and soft tissues are developed for medical ultrasound imaging. As a representation, a human‐sized torso tank system with programmable volume control of the dynamic bladder phantom is designed with the purpose to validate ultrasound imaging devices.
Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.
A conformable sensory face mask for decoding biological and environmental signals
Face masks are used to reduce exposure to viruses and other environmental hazards such as air pollution, and integrating wearable electronics into face masks could provide valuable insights into personal and public health. However, relevant wearable devices are typically designed only to monitor biological information such as breathing patterns, and do not provide information about the status of the face mask. Here we report a conformable sensory interface that can be attached to the inside of any user-supplied face mask and used to monitor signals related to infectious diseases, environmental conditions and wear status of the face mask. Multimodal signals from the sensory face mask are wirelessly transmitted to a server through a custom-made mobile app. The system can simultaneously monitor multiple signals, including skin temperature, humidity, verbal activity, breathing pattern and fit status of the face mask. We also develop a machine learning algorithm that can be used to reliably decode the face mask position. A conformable sensory interface that can be attached to the inside of any user-supplied face mask can be used to monitor signals related to infectious diseases, environmental conditions and wear status of the face mask.
A conformable phased-array ultrasound patch for bladder volume monitoring
Ultrasound can be used to image soft tissues in vivo for the early diagnosis and monitoring of disease progression. However, conventional ultrasound probes are rigid, have a narrow field of view and are operator dependent. Conformable transducers have been proposed, but they lack efficient element localization and effective spatial resolution during mechanical deformations. Here we report a conformable ultrasound bladder patch that is based on multiple phased arrays embedded in a stretchable substrate and can provide mechanically robust, conformable and in vivo volumetric organ monitoring. The phased arrays use Sm/La-doped Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 ceramics as the piezoelectric material, which offers superior properties ( d 33  = 1,000 pC N −1 , ε r  = 7,500 and k 33  = 0.77) than conventional piezoelectric ceramics. We use the conformable ultrasound patch in a pilot clinical study of bladder monitoring. Bladder volume estimation with the patch is comparable (relative errors of 3.2 ± 6.4% and 10.8 ± 8.2% with and without ultrasound gel, respectively) to that obtained using standard clinical ultrasound equipment, and not requiring manual translation or rotation by an operator. An ultrasound patch that is based on multiple phased arrays of rare-earth-doped ceramic piezoelectric transducers on a stretchable substrate can be conformably attached to the surface of the body for a large field of view and operator-independent imaging of deep organs.
PUNTERS TURN ON DENIS THE MENACE ; The day absent-minded Denis miscounted
[DENIS OREGAN], who is retained by Inglis Drevers trainer Howard Johnson, will be off from January 25 for two weeks. A sympathetic Knight said afterwards: Denis is mortified. He had walked the course beforehand and we discussed it in the paddock. I reminded him that he had to go round three times. The howler left a simple task for Timmy Murphy on the Nick Gifford-trained 13-8 favourite Cathedral Rock, who cruised home a distance clear of Shouldhavehadthat. Gifford was also sympathetic to ORegan. The horse was second-favourite, but mistakes do happen and Denis probably hasnt ridden here very often, he said. But take nothing away from my fella, who won easily.
Riding plans fail to worry Star's owner
[Denman], I was spellbound. It was a fantastic performance.' Denman, who races for dual owners Paul Barber and Harry Findlay, runs next in the Lexus Chase after Christmas at Leopardstown. His Hennessy win matched the achievement of Trabolgan, who won it with 11st 12lb in 2005. The nature of Denman's victory, with [Thomas] looking round for dangers early in the home straight, left a massive impression. BHA head of handicapping Phil Smith said: 'I've put him 1lb behind Exotic Dancer, which is up 15lb. We have three chasing superstars on our hands.
Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study
Models of Alzheimer's disease propose a sequence of amyloid β (Aβ) accumulation, hypometabolism, and structural decline that precedes the onset of clinical dementia. These pathological features evolve both temporally and spatially in the brain. In this study, we aimed to characterise where in the brain and when in the course of the disease neuroimaging biomarkers become abnormal. Between Jan 1, 2009, and Dec 31, 2015, we analysed data from mutation non-carriers, asymptomatic carriers, and symptomatic carriers from families carrying gene mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein (APP) enrolled in the Dominantly Inherited Alzheimer's Network. We analysed 11C-Pittsburgh Compound B (11C-PiB) PET, 18F-Fluorodeoxyglucose (18F-FDG) PET, and structural MRI data using regions of interest to assess change throughout the brain. We estimated rates of biomarker change as a function of estimated years to symptom onset at baseline using linear mixed-effects models and determined the earliest point at which biomarker trajectories differed between mutation carriers and non-carriers. This study is registered at ClinicalTrials.gov (number NCT00869817) 11C-PiB PET was available for 346 individuals (162 with longitudinal imaging), 18F-FDG PET was available for 352 individuals (175 with longitudinal imaging), and MRI data were available for 377 individuals (201 with longitudinal imaging). We found a sequence to pathological changes, with rates of Aβ deposition in mutation carriers being significantly different from those in non-carriers first (across regions that showed a significant difference, at a mean of 18·9 years [SD 3·3] before expected onset), followed by hypometabolism (14·1 years [5·1] before expected onset), and lastly structural decline (4·7 years [4·2] before expected onset). This biomarker ordering was preserved in most, but not all, regions. The temporal emergence within a biomarker varied across the brain, with the precuneus being the first cortical region for each method to show divergence between groups (22·2 years before expected onset for Aβ accumulation, 18·8 years before expected onset for hypometabolism, and 13·0 years before expected onset for cortical thinning). Mutation carriers had elevations in Aβ deposition, reduced glucose metabolism, and cortical thinning compared with non-carriers which preceded the expected onset of dementia. Accrual of these pathologies varied throughout the brain, suggesting differential regional and temporal vulnerabilities to Aβ, metabolic decline, and structural atrophy, which should be taken into account when using biomarkers in a clinical setting as well as designing and evaluating clinical trials. US National Institutes of Health, the German Center for Neurodegenerative Diseases, and the Medical Research Council Dementias Platform UK.
Safety and effectiveness of hormonal treatment versus hormonal treatment with vigabatrin for infantile spasms (ICISS): a randomised, multicentre, open-label trial
Infantile spasms constitutes a severe infantile epilepsy syndrome that is difficult to treat and has a high morbidity. Hormonal therapies or vigabatrin are the most commonly used treatments. We aimed to assess whether combining the treatments would be more effective than hormonal therapy alone. In this multicentre, open-label randomised trial, 102 hospitals (Australia [three], Germany [11], New Zealand [two], Switzerland [three], and the UK [83]) enrolled infants who had a clinical diagnosis of infantile spasms and a hypsarrhythmic (or similar) EEG no more than 7 days before enrolment. Participants were randomly assigned (1:1) by a secure website to receive hormonal therapy with vigabatrin or hormonal therapy alone. If parents consented, there was an additional randomisation (1:1) of type of hormonal therapy used (prednisolone or tetracosactide depot). Block randomisation was stratified for hormonal treatment and risk of developmental impairment. Parents and clinicians were not masked to therapy, but investigators assessing electro-clinical outcome were masked to treatment allocation. Minimum doses were prednisolone 10 mg four times a day or intramuscular tetracosactide depot 0·5 mg (40 IU) on alternate days with or without vigabatrin 100 mg/kg per day. The primary outcome was cessation of spasms, which was defined as no witnessed spasms on and between day 14 and day 42 from trial entry, as recorded by parents and carers in a seizure diary. Analysis was by intention to treat. The trial is registered with The International Standard Randomised Controlled Trial Number (ISRCTN), number 54363174, and the European Union Drug Regulating Authorities Clinical Trials (EUDRACT), number 2006-000788-27. Between March 7, 2007, and May 22, 2014, 766 infants were screened and, of those, 377 were randomly assigned to hormonal therapy with vigabatrin (186) or hormonal therapy alone (191). All 377 infants were assessed for the primary outcome. Between days 14 and 42 inclusive no spasms were witnessed in 133 (72%) of 186 patients on hormonal therapy with vigabatrin compared with 108 (57%) of 191 patients on hormonal therapy alone (difference 15·0%, 95% CI 5·1–24·9, p=0·002). Serious adverse reactions necessitating hospitalisation occurred in 33 infants (16 on hormonal therapy alone and 17 on hormonal therapy with vigabatrin). The most common serious adverse reaction was infection occurring in five infants on hormonal therapy alone and four on hormonal therapy with vigabatrin. There were no deaths attributable to treatment. Hormonal therapy with vigabatrin is significantly more effective at stopping infantile spasms than hormonal therapy alone. The 4 week period of spasm cessation required to achieve a primary clinical response to treatment suggests that the effect seen might be sustained, but this needs to be confirmed at the 18 month follow-up. The Castang Foundation, Bath Unit for Research in Paediatrics, National Institute of Health Research, the Royal United Hospitals Bath NHS Foundation Trust, the BRONNER-BENDUNG Stifung/Gernsbach, and University Children's Hospital Zurich.