Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
720 result(s) for "Maree, M"
Sort by:
Serviceability and ductility behaviour of hybrid reinforced concrete beams partially composed of engineered cementitious composite (ECC)
GFRP bars can be used partially or fully instead of steel bars in RC-beams to eliminate corrosion problems, especially in harsh environments. Also, the implementation of the combined use of engineered cementitious composite (ECC) and the hybrid (steel-GFRP) reinforcement in concrete beams can enhance strength and serviceability. In this paper, seven beams; one as a control beam cast with traditional concrete, and six partial ECC RC-beams with GFRP bars only or RC-hybrid (steel-GFRP) bars were designed to investigate both deflection and ductility behaviour of such beam type. This research explored reinforcement types and two ECC configurations: (a) a bottom layer of varying thickness, (b) a U-shaped formwork. All specimens underwent four-point bending testing to examine cracks distribution, moment-strain, and moment-curvature relation, in addition to the evaluation of deflection equations and assessment of ductility of the composite beams. The experimental findings revealed that thicker ECC in the tension zone led to changes in the distribution of vertical cracks, stiffness, and energy absorption. The use of U-shaped ECC configuration generally leads to an increase in the ductility index. A specific construction technique with a corrugated surface was implemented, which created a roughened surface, improved the interface shear transfer, and eliminated bond failure at the interface. The deflection values calculated using ACI 318 -19 and CSA S806-12 equations showed good correlation with the experimentally measured deflections. In contrast, the ACI 440.1R-15 equations did not accurately capture the deflection behavior across all tested specimens.
Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event
The Galactic Centre contains a supermassive black hole with a mass of four million Suns 1 within an environment that differs markedly from that of the Galactic disk. Although the black hole is essentially quiescent in the broader context of active galactic nuclei, X-ray observations have provided evidence for energetic outbursts from its surroundings 2 . Also, although the levels of star formation in the Galactic Centre have been approximately constant over the past few hundred million years, there is evidence of increased short-duration bursts 3 , strongly influenced by the interaction of the black hole with the enhanced gas density present within the ring-like central molecular zone 4 at Galactic longitude | l | < 0.7 degrees and latitude | b | < 0.2 degrees. The inner 200-parsec region is characterized by large amounts of warm molecular gas 5 , a high cosmic-ray ionization rate 6 , unusual gas chemistry, enhanced synchrotron emission 7 , 8 , and a multitude of radio-emitting magnetized filaments 9 , the origin of which has not been established. Here we report radio imaging that reveals a bipolar bubble structure, with an overall span of 1 degree by 3 degrees (140 parsecs × 430 parsecs), extending above and below the Galactic plane and apparently associated with the Galactic Centre. The structure is edge-brightened and bounded, with symmetry implying creation by an energetic event in the Galactic Centre. We estimate the age of the bubbles to be a few million years, with a total energy of 7 × 10 52  ergs. We postulate that the progenitor event was a major contributor to the increased cosmic-ray density in the Galactic Centre, and is in turn the principal source of the relativistic particles required to power the synchrotron emission of the radio filaments within and in the vicinity of the bubble cavities. Radio observations show a bipolar bubble structure of size 140 parsecs by 430 parsecs both above and below the Galactic Centre.
Machine learning base models to predict the punching shear capacity of posttensioned UHPC flat slabs
The aim of this research is to present correction factors for the punching shear formulas of ACI-318 and EC2 design codes to adopt the punching capacity of post tensioned ultra-high-performance concrete (PT-UHPC) flat slabs. To achieve that goal, the results of previously tested PT-UHPC flat slabs were used to validate the developed finite element method (FEM) model in terms of punching shear capacity. Then, a parametric study was conducted using the validated FEM to generate two databases, each database included concrete compressive strength, strands layout, shear reinforcement capacity and the aspect ratio of the column besides the correction factor (the ratio between the FEM punching capacity and the design code punching capacity). The first considered design code in the first database was ACI-318 and in the second database was EC2. Finally, there different “Machine Learning” (ML) techniques manly “Genetic programming” (GP), “Artificial Neural Network” (ANN) and “Evolutionary Polynomial Regression” (EPR) were applied on the two generated databases to predict the correction factors as functions of the considered parameters. The results of the study indicated that all the developed (ML) models showed almost the same level of accuracy in terms of the punching ultimate load (about 96%) and the ACI-318 correction factor depends mainly on the concrete compressive strength and aspect ratio of the column, while the EC2 correction factor depends mainly on the concrete compressive strength and the shear reinforcement capacity.
Auxin transport is sufficient to generate a maximum and gradient guiding root growth
The plant growth regulator auxin controls cell identity, cell division and cell expansion. Auxin efflux facilitators (PINs) are associated with auxin maxima in distal regions of both shoots and roots. Here we model diffusion and PIN-facilitated auxin transport in and across cells within a structured root layout. In our model, the stable accumulation of auxin in a distal maximum emerges from the auxin flux pattern. We have experimentally tested model predictions of robustness and self-organization. Our model explains pattern formation and morphogenesis at timescales from seconds to weeks, and can be understood by conceptualizing the root as an 'auxin capacitor'. A robust auxin gradient associated with the maximum, in combination with separable roles of auxin in cell division and cell expansion, is able to explain the formation, maintenance and growth of sharply bounded meristematic and elongation zones. Directional permeability and diffusion can fully account for stable auxin maxima and gradients that can instruct morphogenesis.
Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root
In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin’s control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.
How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility
To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) PIP₂, PIP₃ and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell \"fronts\". This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model.
Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion
Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole.
Spatiotemporal coordination of cell division and growth during organ morphogenesis
A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study.
Root System Architecture from Coupling Cell Shape to Auxin Transport
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.
Deterministic Versus Stochastic Cell Polarisation Through Wave-Pinning
Cell polarization is an important part of the response of eukaryotic cells to stimuli, and forms a primary step in cell motility, differentiation, and many cellular functions. Among the important biochemical players implicated in the onset of intracellular asymmetries that constitute the early phases of polarization are the Rho GTPases, such as Cdc42, Rac, and Rho, which present high active concentration levels in a spatially localized manner. Rho GTPases exhibit positive feedback-driven interconversion between distinct active and inactive forms, the former residing on the cell membrane, and the latter predominantly in the cytosol. A deterministic model of the dynamics of a single Rho GTPase described earlier by Mori et al. exhibits sustained polarization by a wave-pinning mechanism. It remained, however, unclear how such polarization behaves at typically low cellular concentrations, as stochasticity could significantly affect the dynamics. We therefore study the low copy number dynamics of this model, using a stochastic kinetics framework based on the Gillespie algorithm, and propose statistical and analytic techniques which help us analyse the equilibrium behaviour of our stochastic system. We use local perturbation analysis to predict parameter regimes for initiation of polarity and wave-pinning in our deterministic system, and compare these predictions with deterministic and stochastic spatial simulations. Comparing the behaviour of the stochastic with the deterministic system, we determine the threshold number of molecules required for robust polarization in a given effective reaction volume. We show that when the molecule number is lowered wave-pinning behaviour is lost due to an increasingly large transition zone as well as increasing fluctuations in the pinning position, due to which a broadness can be reached that is unsustainable, causing the collapse of the wave, while the variations in the high and low equilibrium levels are much less affected.