Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
164 result(s) for "Margolis, Harold S."
Sort by:
Evaluation of Commercially Available Diagnostic Tests for the Detection of Dengue Virus NS1 Antigen and Anti-Dengue Virus IgM Antibody
Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60-75% and specificity 71-80%; NS1 RDT sensitivity was 38-71% and specificity 76-80%; the IgM anti-DENV RDTs sensitivity was 30-96%, with a specificity of 86-92%, and IgM anti-DENV ELISA sensitivity was 96-98% and specificity 78-91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88-94%.
Autocidal gravid ovitraps protect humans from chikungunya virus infection by reducing Aedes aegypti mosquito populations
Public health responses to outbreaks of dengue, chikungunya, and Zika virus have been stymied by the inability to control the primary vector, Aedes aegypti mosquitos. Consequently, the need for novel approaches to Aedes vector control is urgent. Placement of three autocidal gravid ovitraps (AGO traps) in ~85% of homes in a community was previously shown to sustainably reduce the density of female Ae. aegypti by >80%. Following the introduction of chikungunya virus (CHIKV) to Puerto Rico, we conducted a seroprevalence survey to estimate the prevalence of CHIKV infection in communities with and without AGO traps and evaluate their effect on reducing CHIKV transmission. Multivariate models that calculated adjusted prevalence ratios (aPR) showed that among 175 and 152 residents of communities with and without AGO traps, respectively, an estimated 26.1% and 43.8% had been infected with CHIKV (aPR = 0.50, 95% CI: 0.37-0.91). After stratification by time spent in their community, protection from CHIKV infection was strongest among residents who reported spending many or all weekly daytime hours in their community:10.3% seropositive in communities with AGO traps vs. 48.7% in communities without (PR = 0.21, 95% CI: 0.11-0.41). The age-adjusted rate of fever with arthralgia attributable to CHIKV infection was 58% (95% CI: 46-66%). The monthly number of CHIKV-infected mosquitos and symptomatic residents were diminished in communities with AGO traps compared to those without. These findings indicate that AGO traps are an effective tool that protects humans from infection with a virus transmitted by Ae. aegypti mosquitos. Future studies should evaluate their protective effectiveness in large, urban communities.
Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015
Identifying etiologies of acute febrile illnesses (AFI) is challenging due to non-specific presentation and limited availability of diagnostics. Prospective AFI studies provide a methodology to describe the syndrome by age and etiology, findings that can be used to develop case definitions and multiplexed diagnostics to optimize management. We conducted a 3-year prospective AFI study in Puerto Rico. Patients with fever ≤7 days were offered enrollment, and clinical data and specimens were collected at enrollment and upon discharge or follow-up. Blood and oro-nasopharyngeal specimens were tested by RT-PCR and immunodiagnostic methods for infection with dengue viruses (DENV) 1-4, chikungunya virus (CHIKV), influenza A and B viruses (FLU A/B), 12 other respiratory viruses (ORV), enterovirus, Leptospira spp., and Burkholderia pseudomallei. Clinical presentation and laboratory findings of participants infected with DENV were compared to those infected with CHIKV, FLU A/B, and ORV. Clinical predictors of laboratory-positive dengue compared to all other AFI etiologies were determined by age and day post-illness onset (DPO) at presentation. Of 8,996 participants enrolled from May 7, 2012 through May 6, 2015, more than half (54.8%, 4,930) had a pathogen detected. Pathogens most frequently detected were CHIKV (1,635, 18.2%), FLU A/B (1,074, 11.9%), DENV 1-4 (970, 10.8%), and ORV (904, 10.3%). Participants with DENV infection presented later and a higher proportion were hospitalized than those with other diagnoses (46.7% versus 27.3% with ORV, 18.8% with FLU A/B, and 11.2% with CHIKV). Predictors of dengue in participants presenting <3 DPO included leukopenia, thrombocytopenia, headache, eye pain, nausea, and dizziness, while negative predictors were irritability and rhinorrhea. Predictors of dengue in participants presenting 3-5 DPO were leukopenia, thrombocytopenia, facial/neck erythema, nausea, eye pain, signs of poor circulation, and diarrhea; presence of rhinorrhea, cough, and red conjunctiva predicted non-dengue AFI. By enrolling febrile patients at clinical presentation, we identified unbiased predictors of laboratory-positive dengue as compared to other common causes of AFI. These findings can be used to assist in early identification of dengue patients, as well as direct anticipatory guidance and timely initiation of correct clinical management.
A Household Serosurvey to Estimate the Magnitude of a Dengue Outbreak in Mombasa, Kenya, 2013
Dengue appears to be endemic in Africa with a number of reported outbreaks. In February 2013, several individuals with dengue-like illnesses and negative malaria blood smears were identified in Mombasa, Kenya. Dengue was laboratory confirmed and an investigation was conducted to estimate the magnitude of local transmission including a serologic survey to determine incident dengue virus (DENV) infections. Consenting household members provided serum and were questioned regarding exposures and medical history. RT-PCR was used to identify current DENV infections and IgM anti-DENV ELISA to identify recent infections. Of 1,500 participants from 701 households, 210 (13%) had evidence of current or recent DENV infection. Among those infected, 93 (44%) reported fever in the past month. Most (68, 73%) febrile infected participants were seen by a clinician and all but one of 32 participants who reportedly received a diagnosis were clinically diagnosed as having malaria. Having open windows at night (OR = 2.3; CI: 1.1-4.8), not using daily mosquito repellent (OR = 1.6; CI: 1.0-2.8), and recent travel outside of Kenya (OR = 2.5; CI: 1.1-5.4) were associated with increased risk of DENV infection. This survey provided a robust measure of incident DENV infections in a setting where cases were often unrecognized and misdiagnosed.
Estimating dengue under-reporting in Puerto Rico using a multiplier model
Dengue is a mosquito-borne viral illness that causes a variety of health outcomes, from a mild acute febrile illness to potentially fatal severe dengue. Between 2005 and 2010, the annual number of suspected dengue cases reported to the Passive Dengue Surveillance System (PDSS) in Puerto Rico ranged from 2,346 in 2006 to 22,496 in 2010. Like other passive surveillance systems, PDSS is subject to under-reporting. To estimate the degree of under-reporting in Puerto Rico, we built separate inpatient and outpatient probability-based multiplier models, using data from two different surveillance systems-PDSS and the enhanced dengue surveillance system (EDSS). We adjusted reported cases to account for sensitivity of diagnostic tests, specimens with indeterminate results, and differences between PDSS and EDSS in numbers of reported dengue cases. In addition, for outpatients, we adjusted for the fact that less than 100% of medical providers submit diagnostic specimens from suspected cases. We estimated that a multiplication factor of between 5 (for 2010 data) to 9 (for 2006 data) must be used to correct for the under-reporting of the number of laboratory-positive dengue inpatients. Multiplication factors of between 21 (for 2010 data) to 115 (for 2008 data) must be used to correct for the under-reporting of laboratory-positive dengue outpatients. We also estimated that, after correcting for underreporting, the mean annual rate, for 2005-2010, of medically attended dengue in Puerto Rico to be between 2.1 (for dengue inpatients) to 7.8 (for dengue outpatients) per 1,000 population. These estimated rates compare to the reported rates of 0.4 (dengue outpatients) to 0.1 (dengue inpatients) per 1,000 population. The multipliers, while subject to limitations, will help public health officials correct for underreporting of dengue cases, and thus better evaluate the cost-and-benefits of possible interventions.
Dengue Incidence in Urban and Rural Cambodia: Results from Population-Based Active Fever Surveillance, 2006–2008
Dengue vaccines are now in late-stage development, and evaluation and robust estimates of dengue disease burden are needed to facilitate further development and introduction. In Cambodia, the national dengue case-definition only allows reporting of children less than 16 years of age, and little is known about dengue burden in rural areas and among older persons. To estimate the true burden of dengue in the largest province of Cambodia, Kampong Cham, we conducted community-based active dengue fever surveillance among the 0-to-19-year age group in rural villages and urban areas during 2006-2008. Active surveillance for febrile illness was conducted in 32 villages and 10 urban areas by mothers trained to use digital thermometers combined with weekly home visits to identify persons with fever. An investigation team visited families with febrile persons to obtain informed consent for participation in the follow-up study, which included collection of personal data and blood specimens. Dengue-related febrile illness was defined using molecular and serological testing of paired acute and convalescent blood samples. Over the three years of surveillance, 6,121 fever episodes were identified with 736 laboratory-confirmed dengue virus (DENV) infections for incidences of 13.4-57.8/1,000 person-seasons. Average incidence was highest among children less than 7 years of age (41.1/1,000 person-seasons) and lowest among the 16-to-19-year age group (11.3/1,000 person-seasons). The distribution of dengue was highly focal, with incidence rates in villages and urban areas ranging from 1.5-211.5/1,000 person-seasons (median 36.5). During a DENV-3 outbreak in 2007, rural areas were affected more than urban areas (incidence 71 vs. 17/1,000 person-seasons, p<0.001). The large-scale active surveillance study for dengue fever in Cambodia found a higher disease incidence than reported to the national surveillance system, particularly in preschool children and that disease incidence was high in both rural and urban areas. It also confirmed the previously observed focal nature of dengue virus transmission.
Estimates of Dengue Force of Infection in Children in Colombo, Sri Lanka
Dengue is the most important vector-borne viral disease worldwide and a major cause of childhood fever burden in Sri Lanka, which has experienced a number of large epidemics in the past decade. Despite this, data on the burden and transmission of dengue virus in the Indian Subcontinent are lacking. As part of a longitudinal fever surveillance study, we conducted a dengue seroprevalence survey among children aged <12 years in Colombo, Sri Lanka. We used a catalytic model to estimate the risk of primary infection among seronegative children. Over 50% of children had IgG antibodies to dengue virus and seroprevalence increased with age. The risk of primary infection was 14.1% per year (95% CI: 12.7%-15.6%), indicating that among initially seronegative children, approximately 1 in 7 experience their first infection within 12 months. There was weak evidence to suggest that the force of primary infection could be lower for children aged 6 years and above. We estimate that there are approximately 30 primary dengue infections among children <12 years in the community for every case notified to national surveillance, although this ratio is closer to 100:1 among infants. Dengue represents a considerable infection burden among children in urban Sri Lanka, with levels of transmission comparable to those in the more established epidemics of Southeast Asia.
Best Practices in Dengue Surveillance: A Report from the Asia-Pacific and Americas Dengue Prevention Boards
Dengue fever is a virus infection that is spread by the Aedes aegypti mosquito and can cause severe disease especially in children. Dengue fever is a major problem in tropical and sub-tropical regions of the world. We invited dengue experts from around the world to attend meetings to discuss dengue surveillance. We reviewed literature, heard detailed reports on surveillance programs, and shared expert opinions. Presentations by 22 countries were heard during the 2.5 day meetings. We describe the best methods of surveillance in general, the stakeholders in dengue surveillance, and the steps from mosquito bite to reporting of a dengue case to explore how best to carry out dengue surveillance. We also provide details and a comparison of the dengue surveillance programs by the presenting countries. The experts provided recommendations for achieving the best possible data from dengue surveillance accepting the realities of the real world (e.g., limited funding and staff). Their recommendations included: (1) Every dengue endemic country should make reporting of dengue cases to the government mandatory; (2) electronic reporting systems should be developed and used; (3) at minimum dengue surveillance data should include incidence, hospitalization rates, deaths by age group; (4) additional studies should be completed to check the sensitivity of the system; (5) laboratories should share expertise and data; (6) tests that identify dengue virus should be used in patients with fever for four days or less and antibody tests should be used after day 4 to diagnose dengue; and (7) early detection and prediction of dengue outbreaks should be goals for national surveillance systems.
Dengue Infection in Children in Ratchaburi, Thailand: A Cohort Study. I. Epidemiology of Symptomatic Acute Dengue Infection in Children, 2006–2009
There is an urgent need to field test dengue vaccines to determine their role in the control of the disease. Our aims were to study dengue epidemiology and prepare the site for a dengue vaccine efficacy trial. We performed a prospective cohort study of children in primary schools in central Thailand from 2006 through 2009. We assessed the epidemiology of dengue by active fever surveillance for acute febrile illness as detected by school absenteeism and telephone contact of parents, and dengue diagnostic testing. Dengue accounted for 394 (6.74%) of the 5,842 febrile cases identified in 2882, 3104, 2717 and 2312 student person-years over the four years, respectively. Dengue incidence was 1.77% in 2006, 3.58% in 2007, 5.74% in 2008 and 3.29% in 2009. Mean dengue incidence over the 4 years was 3.6%. Dengue virus (DENV) types were determined in 333 (84.5%) of positive specimens; DENV serotype 1 (DENV-1) was the most common (43%), followed by DENV-2 (29%), DENV-3 (20%) and DENV-4 (8%). Disease severity ranged from dengue hemorrhagic fever (DHF) in 42 (10.5%) cases, dengue fever (DF) in 142 (35.5%) cases and undifferentiated fever (UF) in 210 (52.5%) cases. All four DENV serotypes were involved in all disease severity. A majority of cases had secondary DENV infection, 95% in DHF, 88.7% in DF and 81.9% in UF. Two DHF (0.5%) cases had primary DENV-3 infection. The results illustrate the high incidence of dengue with all four DENV serotypes in primary school children, with approximately 50% of disease manifesting as mild clinical symptoms of UF, not meeting the 1997 WHO criteria for dengue. Severe disease (DHF) occurred in one tenth of cases. Data of this type are required for clinical trials to evaluate the efficacy of dengue vaccines in large scale clinical trials.
Hepatitis A Vaccine versus Immune Globulin for Postexposure Prophylaxis
In this randomized comparison of hepatitis A vaccine and immune globulin for prophylaxis after household or day-care exposure to hepatitis A, infection rates were low with either immune globulin (3.3%) or vaccine (4.4%), and the study's prespecified criterion for noninferiority was met. Hepatitis A vaccine provides long-term immunity and may be a reasonable choice for postexposure prophylaxis. In this comparison of hepatitis A vaccine and immune globulin for prophylaxis after exposure to hepatitis A, infection rates were low with either immune globulin (3.3%) or vaccine (4.4%). The hepatitis A virus causes an acute inflammatory disease of the liver. It is transmitted by the fecal–oral route and has an incubation period of 15 to 50 days (average period, 28 days). 1 The majority of the world's population is still at moderate-to-high risk for hepatitis A virus infection. 2 In the United States, the incidence of hepatitis A has decreased substantially with the introduction of childhood vaccination. 3 Immune globulin has been the only product currently recommended for postexposure prophylaxis in the United States. 1 In some settings, the number of people with indications for immune globulin may be quite large. For . . .