Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Marie-Orleach, Lucas"
Sort by:
Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry
by
Glémin, Sylvain
,
Marie-Orleach, Lucas
,
Brochmann, Christian
in
Allopatry
,
Analysis
,
Biodiversity and Ecology
2022
Self-fertilisation is widespread among hermaphroditic species across the tree of life. Selfing has many consequences on the genetic diversity and the evolutionary dynamics of populations, which may in turn affect macroevolutionary processes such as speciation. On the one hand, because selfing increases genetic drift and reduces migration rate among populations, it may be expected to promote speciation. On the other hand, because selfing reduces the efficacy of selection, it may be expected to hamper ecological speciation. To better understand under which conditions and in which direction selfing affects the build-up of reproductive isolation, an explicit population genetics model is required. Here, we focus on the interplay between genetic drift, selection and genetic linkage by studying speciation without gene flow. We test how fast populations with different rates of selfing accumulate mutations leading to genetic incompatibilities. When speciation requires populations to pass through a fitness valley caused by underdominant and compensatory mutations, selfing reduces the depth and/or breadth of the valley, and thus overall facilitates the fixation of incompatibilities. When speciation does not require populations to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller incompatibilities (BDMi), the lower effective population size and higher genetic linkage in selfing populations both facilitate the fixation of incompatibilities. Interestingly, and contrary to intuitive expectations, local adaptation does not always accelerate the fixation of incompatibilities in outcrossing relative to selfing populations. Our work helps to clarify how incompatibilities accumulate in selfing
vs
. outcrossing lineages, and has repercussions on the pace of speciation as well as on the genetic architecture of reproductive isolation.
Journal Article
Sexual selection predicts species richness across the animal kingdom
by
Marie-Orleach, Lucas
,
Ritchie, Michael G.
,
Morrow, Edward H.
in
Animals
,
Bateman Gradient
,
Bateman Principles
2018
Our improving knowledge of the animal tree of life consistently demonstrates that some taxa diversify more rapidly than others, but what contributes to this variation remains poorly understood. An influential hypothesis proposes that selection arising from competition for mating partners plays a key role in promoting speciation. However, empirical evidence showing a link between proxies of this sexual selection and species richness is equivocal. Here, we collected standardized metrics of sexual selection for a broad range of animal taxa, and found that taxonomic families characterized by stronger sexual selection on males show relatively higher species richness. Thus, our data support the hypothesis that sexual selection elevates species richness. This could occur either by promoting speciation and/or by protecting species against extinction.
Journal Article
Social effects on fruit fly courtship song
by
Marie‐Orleach, Lucas
,
Bailey, Nathan W.
,
Ritchie, Michael G.
in
acoustic signals
,
Animal biology
,
Behavioral plasticity
2019
Courtship behavior in Drosophila has often been described as a classic innate behavioral repertoire, but more recently extensive plasticity has been described. In particular, prior exposure to acoustic signals of con‐ or heterspecific males can change courtship traits in both sexes that are liable to be important in reproductive isolation. However, it is unknown whether male courtship song itself is socially plastic. We examined courtship song plasticity of two species in the Drosophila melanogaster subgroup. Sexual isolation between the species is influenced by two male song traits, the interpulse interval (IPI) and sinesong frequency (SSF). Neither of these showed plasticity when males had prior experience of con‐ and heterospecific social partners. However, males of both species produced longer bursts of song during courtship when they were exposed to social partners (either con‐ or heterospecific) than when they were reared in isolation. D. melanogaster carrying mutations affecting short‐ or medium‐term memory showed a similar response to the social environment, not supporting a role for learning. Our results demonstrate that the amount of song a male produces during courtship is plastic depending on the social environment, which might reflect the advantage of being able to respond to variation in intrasexual competition, but that song structure itself is relatively inflexible, perhaps due to strong selection against hybridization.
We tested the social plasticity of courtship song of male Drosophila melanogaster and Drosophila simulans. We first manipulated the social environment by raising focal males either in isolation, with five conspecific males, or with five heterospecific males. Then, we recorded the courtship song. Males produced longer pulse song bursts after being exposed to (any) males. However, the key parameters of courtship songs: interpulse interval (IPI) and sinesong frequency (SSF) were not affected by the male social environment.
Journal Article
The repeatable opportunity for selection differs between pre‐ and postcopulatory fitness components
by
Marie‐Orleach, Lucas
,
Schärer, Lukas
,
Vellnow, Nikolas
in
Animal reproduction
,
Competition
,
Copulation
2021
In species with multiple mating, intense sexual selection may occur both before and after copulation. However, comparing the strength of pre‐ and postcopulatory selection is challenging, because (i) postcopulatory processes are generally difficult to observe and (ii) the often‐used opportunity for selection (I) metric contains both deterministic and stochastic components. Here, we quantified pre‐ and postcopulatory male fitness components of the simultaneously hermaphroditic flatworm, Macrostomum lignano. We did this by tracking fluorescent sperm—using transgenics—through the transparent body of sperm recipients, enabling to observe postcopulatory processes in vivo. Moreover, we sequentially exposed focal worms to three independent mating groups, and in each assessed their mating success, sperm‐transfer efficiency, sperm fertilizing efficiency, and partner fecundity. Based on these multiple measures, we could, for each fitness component, combine the variance (I) with the repeatability (R) in individual success to assess the amount of repeatable variance in individual success—a measure we call the repeatable opportunity for selection (IR). We found higher repeatable opportunity for selection in sperm‐transfer efficiency and sperm fertilizing efficiency compared to mating success, which clearly suggests that postcopulatory selection is stronger than precopulatory selection. Our study demonstrates that the opportunity for selection contains a repeatable deterministic component, which can be assessed and disentangled from the often large stochastic component, to provide a better estimate of the strength of selection.
Journal Article
Sexual selection in females and the evolution of polyandry
by
Marie-Orleach, Lucas
,
Winkler, Lennart
,
Fromonteil, Salomé
in
Animal reproduction
,
Animals
,
Biodiversity and Ecology
2023
Over the last decades, the field of sexual selection underwent a paradigm shift from sexual-stereotype thinking of “eager” males and “coy” females towards a more nuanced perspective acknowledging that not only males but also females can benefit from multiple mating and compete for mating partners. Yet, sexual selection in females is still considered a peculiarity, and the evolution of polyandry is often viewed to result from a higher mating interest of males. Here, we present meta-analytic evidence from 77 species across a broad range of animal taxa to demonstrate that female reproductive success is overall positively correlated with mating success, suggesting that females typically benefit from multiple mating. Importantly, we found that these fitness gains likely promote the evolution of polyandry. Our findings offer support for the idea that sexual selection is widespread in females and to play a key role for the evolution of animal mating systems. Thereby, our results extend our understanding of the evolutionary consequences of sexual reproduction and contribute to a more balanced view of how sexual selection operates in males and females.
Journal Article
Quantifying episodes of sexual selection: Insights from a transparent worm with fluorescent sperm
by
Marie-Orleach, Lucas
,
Vizoso, Dita B.
,
David, Patrice
in
Animal reproduction
,
Animals
,
Environmental Sciences
2016
Sexual selection operates through consecutive episodes of selection that ultimately contribute to the observed variance in reproductive success between individuals. Understanding the relative importance of these episodes is challenging, particularly because the relevant postcopulatory fitness components are often difficult to assess. Here, we investigate different episodes of sexual selection on the male sex function, by assessing how (precopulatory) mating success, and (postcopulatory) sperm-transfer efficiency and sperm-fertilizing efficiency contribute to male reproductive success. Specifically, we used a transgenic line of the transparent flatworm, Macrostomum lignano, which expresses green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking and paternity analysis. We found that a large proportion of variance in male reproductive success arose from the postcopulatory episodes. Moreover, we also quantified selection differentials on 10 morphological traits. Testis size and seminal vesicle size showed significant positive selection differentials, which were mainly due to selection on sperm-transfer efficiency. Overall, our results demonstrate that male reproductive success in M. lignano is not primarily limited by the number of matings achieved, but rather by the ability to convert matings into successful fertilizations, which is facilitated by producing many sperm.
Journal Article
Indirect genetic effects and sexual conflicts
by
Schlatter, Aline
,
Mouginot, Pierick
,
Vizoso, Dita B.
in
Animal reproduction
,
Animals
,
Copulation
2017
The expression of an individual’s phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals—varying up to 2.4-fold—suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.
Journal Article
SEX ALLOCATION ADJUSTMENT TO MATING GROUP SIZE IN A SIMULTANEOUS HERMAPHRODITE
by
Vizoso, Dita B.
,
Ladurner, Peter
,
Berezikov, Eugene
in
Animals
,
Environmental Sciences
,
Evolution
2013
Sex allocation theory is considered as a touchstone of evolutionary biology, providing some of the best supported examples for Darwinian adaptation. In particular, Hamilton's local mate competition theory has been shown to generate precise predictions for extraordinary sex ratios observed in many separate-sexed organisms. In analogy to local mate competition, Charnov's mating group size model predicts how sex allocation in simultaneous hermaphrodites is affected by the mating group size (i.e., the number of mating partners plus one). Until now, studies have not directly explored the relationship between mating group size and sex allocation, which we here achieve in the simultaneously hermaphroditic flatworm Macrostomum lignano. Using transgenic focal worms with ubiquitous expression of green-fluorescent protein (GFP), we assessed the number of wild-type mating partners carrying GFP+ sperm from these focal worms when raised in different social group sizes. This allowed us to test directly how mating group size was related to the sex allocation of focal worms. We find that the proportion of male investment initially increases with increasing mating group size, but then saturates as predicted by theory. To our knowledge, this is the first direct test of the mating group size model in a simultaneously hermaphroditic animal.
Journal Article
Sexual selection in females and the evolution of polyandry
2023
Over the last decades, the field of sexual selection underwent a paradigm shift from sexual-stereotype thinking of \"eager\" males and \"coy\" females towards a more nuanced perspective acknowledging that not only males but also females can benefit from multiple mating and compete for mating partners. Yet, sexual selection in females is still considered a peculiarity, and the evolution of polyandry is often viewed to result from a higher mating interest of males. Here, we present meta-analytic evidence from 77 species across a broad range of animal taxa to demonstrate that female reproductive success is overall positively correlated with mating success, suggesting that females typically benefit from multiple mating. Importantly, we found that these fitness gains likely promote the evolution of polyandry. Our findings offer support for the idea that sexual selection is widespread in females and to play a key role for the evolution of animal mating systems. Thereby, our results extend our understanding of the evolutionary consequences of sexual reproduction and contribute to a more balanced view of how sexual selection operates in males and females.
Journal Article