Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Mariottini, Chiara"
Sort by:
A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial
Seasonal influenza viruses constantly change through antigenic drift and the emergence of pandemic influenza viruses through antigenic shift is unpredictable. Conventional influenza virus vaccines induce strain-specific neutralizing antibodies against the variable immunodominant globular head domain of the viral hemagglutinin protein. This necessitates frequent re-formulation of vaccines and handicaps pandemic preparedness. In this completed, observer-blind, randomized, placebo-controlled phase I trial (NCT03300050), safety and immunogenicity of chimeric hemagglutinin-based vaccines were tested in healthy, 18–39-year-old US adults. The study aimed to test the safety and ability of the vaccines to elicit broadly cross-reactive antibodies against the hemagglutinin stalk domain. Participants were enrolled into five groups to receive vaccinations with live-attenuated followed by AS03-adjuvanted inactivated vaccine ( n  = 20), live-attenuated followed by inactivated vaccine ( n  = 15), twice AS03-adjuvanted inactivated vaccine ( n  = 16) or placebo ( n  = 5, intranasal followed by intramuscular; n  = 10, twice intramuscular) 3 months apart. Vaccination was found to be safe and induced a broad, strong, durable and functional immune response targeting the conserved, immunosubdominant stalk of the hemagglutinin. The results suggest that chimeric hemagglutinins have the potential to be developed as universal vaccines that protect broadly against influenza viruses. New influenza virus vaccines tested in humans elicit broadly cross-reactive antibodies that bind the stalk of the viral hemagglutinin protein and may serve as templates to design a universal influenza vaccine.
Memory discrimination is promoted by the expression of the transcription repressor WT1 in the dentate gyrus
The hippocampus is critical for the precise formation of contextual memories. Overlapping inputs coming from the entorhinal cortex are processed by the trisynaptic pathway to form distinct memories. Disruption in any step of the circuit flow can lead to a lack of memory precision, and to memory interference. We have identified the transcriptional repressor Wilm’s Tumor 1 (WT1) as an important regulator of synaptic plasticity involved in memory discrimination in the hippocampus. In male mice, using viral and transgenic approaches, we showed that WT1 deletion in granule cells of the dentate gyrus (DG) disrupts memory discrimination. With electrophysiological methods, we then identified changes in granule cells’ excitability and DG synaptic transmission indicating that WT1 knockdown in DG granule cells disrupts the inhibitory feedforward input from mossy fibers to CA3 by decreasing mIPSCs and shifting the normal excitatory/inhibitory (E/I) balance in the DG → CA3 circuit in favor of excitation. Finally, using a chemogenetic approach, we established a causal link between granule cell hyperexcitability and memory discrimination impairments. Our results suggest that WT1 enables a circuit-level computation that drives pattern discrimination behavior.
Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA‐approved drug that inhibits XDH, on human non‐small‐cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six‐gene signatures for allopurinol‐sensitive and allopurinol‐resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol‐resistant lines. Treatment of resistant cell lines with allopurinol and CEP‐33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP‐33779 was verified in vivo using tumor formation in NCR‐nude mice. We utilized the six‐gene signatures to predict five additional allopurinol‐sensitive NSCLC cell lines and four allopurinol‐resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient‐derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP‐33779 treatment. Patient‐derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine. Integrative analysis of The Cancer Genome Atlas data revealed that allopurinol is an effective drug for the treatment of non‐small‐cell lung cancer. In vitro and in vivo experiments, followed by analysis of Cancer Cell Line Encyclopedia data and network analysis, enabled identification of the genomic signatures of responsiveness to allopurinol and combination therapy with allopurinol and a JAK2 inhibitor. This framework enables precision oncology for lung cancer.
Wilm’s tumor 1 promotes memory flexibility
Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm’s Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences. Impairments in memory flexibility are associated with neuropsychiatric disorders such as PTSD and autism. Here, the authors report that the transcriptional repressor Wilm's Tumor 1 regulates synaptic plasticity leading to weakening of memory strength and enabling memory flexibility.
Transcriptome signatures preceding the induction of anti-stalk antibodies elicited after universal influenza vaccination
A phase 1 clinical trial to test the immunogenicity of a chimeric group 1 HA (cHA) universal influenza virus vaccine targeting the conserved stalk domain of the hemagglutinin of influenza viruses was carried out. Vaccination with adjuvanted-inactivated vaccines induced high anti-stalk antibody titers. We sought to identify gene expression signatures that correlate with such induction. Messenger-RNA sequencing in whole blood was performed on the peripheral blood of 53 vaccinees. We generated longitudinal data on the peripheral blood of 53 volunteers, at early (days 3 and 7) and late (28 days) time points after priming and boosting with cHAs. Differentially expressed gene analysis showed no differences between placebo and live-attenuated vaccine groups. However, an upregulation of genes involved in innate immune responses and type I interferon signaling was found at day 3 after vaccination with inactivated adjuvanted formulations. Cell type deconvolution analysis revealed a significant enrichment for monocyte markers and different subsets of dendritic cells as mediators for optimal B cell responses and significant increase of anti-stalk antibodies in sera. A significant upregulation of immunoglobulin-related genes was only observed after administration of adjuvanted vaccines (either as primer or booster) with specific induction of anti-stalk IGVH1-69 . This approach informed of specific immune signatures that correlate with robust anti-stalk antibody responses, while also helping to understand the regulation of gene expression induced by cHA proteins under different vaccine regimens.
Systems therapeutics analyses identify genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer
The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop genomic signatures for sensitivity or resistance to specific drugs. We analyzed TCGA data for lung adenocarcinoma (LUAD) patients and identified a subset where xanthine dehydrogenase expression correlated with decreased survival. We tested allopurinol, an FDA approved drug that inhibits xanthine dehydrogenase on a library of human Non-Small Cell Lung Cancer (NSCLC) cell lines from CCLE and identified sensitive and resistant cell lines. We utilized the gene expression profiles of these cell lines to identify six-gene signatures for allopurinol sensitive and resistant cell lines. Network building and analyses identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 were verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC lines, and four allopurinol-resistant lines susceptible to combination therapy. We found that drug treatment of all cell lines yielded responses as predicted by the genomic signatures. We searched the library of patient-derived NSCLC tumors from Jackson Laboratory to identify tumors that would be predicted to be sensitive or resistant to allopurinol treatment. Both patient-derived tumors predicted to be allopurinol sensitive showed the predicted sensitivity, and the predicted resistant tumors were sensitive to combination therapy. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine. Footnotes * New data was added.
Wilms tumor 1 promotes memory flexibility
Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however the underlying mechanisms that enable memory flexibility are still poorly understood. Here we identified the transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 was activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhanced CA1 neuronal excitability, LTP and long-term memory whereas its over-expression weakened memory retention. Moreover, forebrain WT1-deficient mice showed deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences. Footnotes * Revised version with -New title -Additional findings and figures as well as updated text. -Revised author list
Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders
Much has been learned over the past 20 years about the role of histamine as a neurotransmitter. This brief article attempts to evaluate the progress accomplished in this field, and discusses the therapeutic potential of the H receptor (H R). All histaminergic neurons are localized in the tuberomammillary nucleus of the posterior hypothalamus and project to almost all regions of the CNS. Histamine exerts its effect via interaction with specific receptors (H R, H R, H R and H R). Antagonists of both H R and H R have been successful as blockbuster drugs for treating allergic conditions and gastric ulcers. H R is still awaiting better functional characterization, but the H R is an attractive target for potential therapies of CNS disorders. Indeed, considerable interest was raised by reports that pharmacological blockade of H Rs exerted procognitive effects in a variety of animal tasks analyzing different types of memory. In addition, blockade of H Rs increased wakefulness and reduced bodyweight in animal models. Such findings hint at the potential use of H R antagonists/inverse agonists for the treatment of Alzheimer s disease and other dementias, attention-deficit hyperactivity disorder, obesity and sleep disorders. As a result, an increasing number of H R antagonists/inverse agonists progress through the clinic for the treatment of a variety of conditions, including attention-deficit hyperactivity disorder, cognitive disorders, narcolepsy and schizophrenia. Moreover, the use of H R antagonists/inverse agonists that weaken traumatic memories may alleviate disorders such as post-traumatic stress syndrome, panic attacks, specific phobias and generalized anxiety. The use of H R ligands for the treatment of neurodegenerative disorders is demonstrated in several studies, indicating a role of the histamine neurons and H Rs in neuroprotection. Recently, direct evidence demonstrated that histaminergic neurons are organized into functionally distinct circuits, impinging on different brain regions, and displaying selective control mechanisms. This could imply independent functions of subsets of histaminergic neurons according to their respective origin and terminal projections. The possibility that H Rs control only some of those functions implies that H R-directed therapies may achieve selective effects, with minimal side effects, and this may increase the interest regarding this class of drugs.
Thymic hyperplasia after autologous hematopoietic stem cell transplantation in multiple sclerosis: a case series
Reactivation of thymopoiesis in adult patients with autoimmune disorders treated with autologous haematopoietic stem cell transplantation (AHSCT) is supported by studies exploring immunoreconstitution. Radiological evidence of thymic hyperplasia after AHSCT was previously reported in patients with systemic sclerosis, but, to our knowledge, it has not been described in multiple sclerosis (MS), where premature thymic involution has been observed and immunosenescence might be accelerated by disease-modifying treatments (DMTs). monocentric case series including MS patients who performed a chest CT scan for clinical purposes after having received AHSCT (BEAM/ATG regimen) for aggressive MS failing DMTs. Chest CT exams were reviewed by a thoracic radiologist: thymic hyperplasia was defined as a rounded mass in the thymic loggia with a density around 40 Hounsfield Units (HU) and thickness >1.3 cm. Fifteen MS patients were included; the median time interval between AHSCT and chest CT scan was 2 (range 1-18) months. All the patients were free from new inflammatory events and DMTs over a median follow-up of 36 months (range 12-84) after AHSCT. Thymic hyperplasia was detected in 3/15 (20%) cases in an exam taken 1 to 3 months after AHSCT; all these patients were females, and aged 30 to 40 years. Lung infections and secondary autoimmunity were diagnosed in 5 and 1 cases, respectively, none of which showed thymic hyperplasia. No associations between thymic hyperplasia and clinical-demographic characteristics or post-AHSCT outcomes were observed. Thymic hyperplasia was detected in 20% of MS patients recently treated with AHSCT. These results are consistent with previous immunological studies showing that AHSCT promotes thymus reactivation in MS patients, further supporting thymopoiesis as a cornerstone of immune reconstitution after AHSCT in this population.
The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration
In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.