Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
105 result(s) for "Markus Meier, H E"
Sort by:
The Atlantic Multidecadal Oscillation controls the impact of the North Atlantic Oscillation on North European climate
European climate is heavily influenced by the North Atlantic Oscillation (NAO). However, the spatial structure of the NAO is varying with time, affecting its regional importance. By analyzing an 850-year global climate model simulation of the last millennium it is shown that the variations in the spatial structure of the NAO can be linked to the Atlantic Multidecadal Oscillation (AMO). The AMO changes the zonal position of the NAO centers of action, moving them closer to Europe or North America. During AMO+ states, the Icelandic Low moves further towards North America while the Azores High moves further towards Europe and vice versa for AMO- states. The results of a regional downscaling for the East Atlantic/European domain show that AMO-induced changes in the spatial structure of the NAO reduce or enhance its influence on regional climate variables of the Baltic Sea such as sea surface temperature, ice extent, or river runoff.
Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates
The Baltic Sea is a shallow, semi-enclosed brackish sea suffering like many other coastal seas from eutrophication caused by human impact. Hence, nutrient load abatement strategies are intensively discussed. With the help of a high-resolution, coupled physical-biogeochemical circulation model we investigate the combined impact of changing nutrient loads from land and changing climate during the 21st century as projected from a global climate model regionalized to the Baltic Sea region. Novel compared to previous studies are an extraordinary spin-up based upon historical reconstructions of atmospheric, nutrient load and runoff forcing, revised nutrient load scenarios and a comparison of nutrient load scenario simulations with and without changing climate. We found in almost all scenario simulations, with differing nutrient inputs, reduced eutrophication and improved ecological state compared to the reference period 1976–2005. This result is a long-lasting consequence of ongoing nutrient load reductions since the 1980s. Only in case of combined high-end nutrient load and climate scenarios, eutrophication is reinforced. Differences compared to earlier studies are explained by the experimental setup including nutrient loads during the historical period and by the projected nutrient loads. We found that the impact of warming climate may amplify the effects of eutrophication and primary production. However, effects of changing climate, within the range of considered greenhouse gas emission scenarios, are smaller than effects of considered nutrient load changes, in particular under low nutrient conditions. Hence, nutrient load reductions following the Baltic Sea Action Plan will lead to improved environmental conditions independently of future climate change.
Projected future climate change and Baltic Sea ecosystem management
Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2–4 °C warming and 50–80 % decrease in ice cover by 2100. Precipitation may increase ∼30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical–biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.
Reconstructing the Development of Baltic Sea Eutrophication 1850–2006
A comprehensive reconstruction of the Baltic Sea state from 1850 to 2006 is presented: driving forces are reconstructed and the evolution of the hydrography and biogeochemical cycles is simulated using the model BALTSEM. Driven by high resolution atmospheric forcing fields (HiResAFF), BALTSEM reproduces dynamics of salinity, temperature, and maximum ice extent. Nutrient loads have been increasing with a noteworthy acceleration from the 1950s until peak values around 1980 followed by a decrease continuing up to present. BALTSEM shows a delayed response to the massive load increase with most eutrophic conditions occurring only at the end of the simulation. This is accompanied by an intensification of the pelagic cycling driven by a shift from spring to summer primary production. The simulation indicates that no improvement in water quality of the Baltic Sea compared to its present state can be expected from the decrease in nutrient loads in recent decades.
Decadal-to-Centennial Variability of Salinity in the Baltic Sea
A transient multicentury simulation mimicking natural variability has been performed for the Baltic Sea. The simulation is used for investigations of long-term trends of salinity in the Baltic Sea with special focus on periods of salinity reduction. Periods with decreasing salinity over 10 yr are found to appear approximately once per century. Considering extended periods of salinity reduction, as observed from 1976 to 1992, such events are found to be quite exceptional. Based on the climate simulation, a return period of 200 yr is estimated. River discharge, net precipitation (precipitation minus evaporation), and zonal wind are identified as the most important drivers for salinity variations in the Baltic Sea. For multidecadal periods, almost two-thirds of the salinity variability can be explained by annual means of river discharge, precipitation, both wind components, temperature, and the North Atlantic Oscillation, when multilinear regression techniques are used. However, the evaluation of wavelet coherences among the time series highlights that this relationship is not constant in time. At least three periods exist, each spanning roughly 50 yr, where the coherence between salinity and runoff as the common main driver is rather weak. This indicates that the importance of river discharge might be limited for certain periods, and drivers such as zonal wind may become more important. Finally, the variability of the Baltic Sea salinity shows increased power on time scales of 100 yr and longer. Such periodicity has never been shown for Baltic Sea salinity, and the driving mechanism remains unclear.
Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere-ocean model 30-ear climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903-1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.
Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population
Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes.
Atlantic multidecadal variability and the implications for North European precipitation
The North Atlantic exhibits temperature variations on multidecadal time scales, summarized as the Atlantic multidecadal variability (AMV). The AMV plays an essential role for regional climate and is a key driver of the low-frequency variability in Northern Europe. This study analyzed the interaction between the atmosphere and the ocean using Coupled Model Intercomparison Project 6 (CMIP6) control runs. The results showed that the physical mechanisms underlying decadal or longer time scales differ among CMIP6 models, which allowed them to be sorted into two clusters. For the first cluster, a significant coherence between the North Atlantic Oscillation (NAO) and the AMV was found. Further, it showed a strong negative NAO response and decreasing precipitation over Northern Europe. In contrast, the second cluster showed no significant coherence between NAO and AMV. This non-coherent cluster developed a low-pressure anomaly in the subpolar gyre and showed increasing precipitation over Europe. Differences in the northward extension of the Atlantic meridional overturning circulation (AMOC) between the two clusters were identified and linked to the different atmospheric responses. Our findings have important implications for European climate, since predictions of an increase or decrease in precipitation over Northern Europe will be model-dependent.
Arctic Ocean Water Mass Transformation in S–T Coordinates
In this paper, water mass transformations in the Arctic Ocean are studied using a recently developed salinity–temperature ( S – T ) framework. The framework allows the water mass transformations to be succinctly quantified by computing the surface and internal diffusive fluxes in S – T coordinates. This study shows how the method can be applied to a specific oceanic region, in this case the Arctic Ocean, by including the advective exchange of water masses across the boundaries of the region. Based on a simulation with a global ocean circulation model, the authors examine the importance of various parameterized mixing processes and surface fluxes for the transformation of water across isohaline and isothermal surfaces in the Arctic Ocean. The model-based results reveal a broadly realistic Arctic Ocean where the inflowing Atlantic and Pacific waters are primarily cooled and freshened before exiting back to the North Atlantic. In the model, the water mass transformation in the T direction is primarily accomplished by the surface heat flux. However, the surface freshwater flux plays a minor role in the transformation of water toward lower salinities, which is mainly driven by a downgradient mixing of salt in the interior ocean. Near the freezing line, the seasonal melt and growth of sea ice influences the transformation pattern.
Surface heat budget over the north sea in climate change simulations
An ensemble of regional climate change scenarios for the North Sea is validated and analyzed. Five Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs) using three different Representative Concentration Pathways (RCPs) have been downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO. Validation of sea surface temperature (SST) against different datasets suggests that the model results are well within the spread of observational datasets. The ensemble mean SST with a bias of less than 1 ∘ C is the solution that fits the observations best and underlines the importance of ensemble modeling. The exchange of momentum, heat, and freshwater between atmosphere and ocean in the regional, coupled model compares well with available datasets. The climatological seasonal cycles of these fluxes are within the 95% confidence limits of the datasets. Towards the end of the 21st century the projected North Sea SST increases by 1.5 ∘ C (RCP 2.6), 2 ∘ C (RCP 4.5), and 4 ∘ C (RCP 8.5), respectively. Under this change the North Sea develops a specific pattern of the climate change signal for the air–sea temperature difference and latent heat flux in the RCP 4.5 and 8.5 scenarios. In the RCP 8.5 scenario the amplitude of the spatial heat flux anomaly increases to 5 W/m 2 at the end of the century. Different hypotheses are discussed that could contribute to the spatially non-uniform change in air–sea interaction. The most likely cause for an increased latent heat loss in the central western North Sea is a drier atmosphere towards the end of the century. Drier air in the lee of the British Isles affects the balance of the surface heat budget of the North Sea. This effect is an example of how regional characteristics modulate global climate change. For climate change projections on regional scales it is important to resolve processes and feedbacks at regional scales.