Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
204 result(s) for "Marlia"
Sort by:
The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon
In this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and H 2 SO 4 . The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and H 2 SO 4 . The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g −1 and 458.43 mg g −1 for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes’ adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π − π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.
Current Trends in the Application of Nanomaterials for the Removal of Pollutants from Industrial Wastewater Treatment—A Review
In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.
Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes
The potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered. The presence of hydroxyl, carboxyl and carbonyl functional groups indicated the significance of the oxygenated functional groups. Spectral analysis of photoluminescence for CQDs confirmed their photoluminescent quality by exhibiting high excitation intensity and possessing greenish-blue fluorescence under UV radiation. The removal percentage of the dyes adsorbed for both CR and MB dyes was 77% and 75%. Langmuir isotherm and pseudo-second-order models closely fitted the adsorption results. Thermodynamics analysis indicated that the adsorption process was exothermic and spontaneous, with excellent reusability and stability. The degradation efficiency of CQDs on both dyes was more than 90% under sunlight irradiation and obeyed the first-order kinetic model. These results demonstrated CQDs to be an excellent adsorbent and outstanding photocatalyst for organic dye degradation.
Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater
In this study, initially 11 different bacterial strains were tested for the degradation capabilities against Basic Orange 2 dye. In initial screening with 78.90% degradation activity, Escherichia coli emerged as the most promising strain to degrade the selected dye, and was then employed in subsequent experiments. For further enhancing the degradation capability of selected bacteria, the effects of various physicochemical parameters were also evaluated. Among the tested parameters, 20 ppm dye concentration, 1666 mg/L glucose concentration, a temperature of 40 °C, 666 mg/L sodium chloride concentration, pH 7, 1000 mg/L urea concentration, a 3-day incubation period and the use of sodium benzoate as a redox mediator (666 mg/L) were found to be ideal conditions to get the highest decolorization/degradation activities. Finally, all the mentioned parameters were combined in a single set of experiments, and the decolorization capacity of the bacteria was enhanced to 89.88%. The effect of pH, dye concentration, incubation time and temperature were found to be responsible for the optimum degradation of dye (p < 0.05), as predicted from the ANOVA (analysis of variance) of the response surface methodology. The metabolites were collected after completion of the process and characterized through Fourier transform irradiation (FTIR) and gas chromatography mass spectrometry (GC-MS). From the data obtained, a proposed mechanism was deduced where it was assumed that the azo bond of the dye was broken by the azoreductase enzyme of the bacteria, resulting in the formation of aniline and 3, 4-diaminobezeminium chloride. The aniline was then further converted to benzene by deamination by the action of the bacterial deaminase enzyme. The benzene ring, after subsequent methylation, was transformed into o-xylene, while 3, 4-diaminobezeminium chloride was converted to p-xylene by enzymatic action. These findings suggest that Escherichia coli is a capable strain to be used in the bioremediation of textile effluents containing azo dyes. However, the selected bacterial strain may need to be further investigated for other dyes as well.
Comparing activated carbon and graphene-based electrodes using electrosorption process to quantify environmental impact associated with thorium extraction via LCA framework
Thorium extraction from radioactive waste via various methods, including solvent extraction, ion exchange, adsorption, and electrosorption, raises significant concerns regarding radiological risks, human health, emissions, and other environmental impacts. To date, previous research estimated an optimal thorium recovery efficiency of 92% using electrosorption from a rare earth facility, though without a life cycle assessment (LCA) paradigm. To the best of our knowledge, this article quantified the environmental impact and emissions lifecycle of thorium extraction via the electrosorption process, employing activated carbon electrodes (ACE) and graphene-based electrodes (GBE) within a sustainable LCA framework. In this context, the inventory data for LCA were compiled from Ecoinvent database 3, sourcing input including raw material extraction, energy consumption, and chemical compounds. The comparative outcomes of midpoint analysis indicated that for each 1 kg of thorium extracted, the ACE system showed substantially higher environmental impacts than GBE, especially regarding human toxicity, freshwater ecotoxicity, and marine ecotoxicity, signifying a heightened release of toxins detrimental to ecosystems and human health. Also, the comparing results of endpoint indicators revealed that ACE showed a high impact over GBE in human health (0.0003–0.0001 DALY), ecosystems (7.14E-07–1.87E-07 species·yr), and resources (7.549–2.921 USD 2013), probably due to differences in chemical usage and emissions release during processing. In terms of output effectiveness and adverse environmental impacts, the GBE technique is more effective in removing thorium compared to ACE for the sustainable management of radioactive waste.
A Content Review of Life Cycle Assessment of Nanomaterials: Current Practices, Challenges, and Future Prospects
This paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology's basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs. We found that there is still a lack of comprehensive LCA study on the environmental impacts of NMs until end-of-life stages, thereby potentially supporting misleading conclusions, in most of the previous studies reviewed. For a comprehensive evaluation of LCA of NMs, we recommend that future studies should: (1) report more detailed and transparent LCI data within NMs LCA studies; (2) consider the environmental impacts and potential risks of NMs within their whole life cycle; (3) adopt a transparent and prudent characterization model; and (4) include toxicity, uncertainty, and sensitivity assessments to analyze the exposure pathways of NMs further. Future recommendations towards improvement and harmonization of methodological for future research directions were discussed and provided. This study's findings redound to future research in the field of LCA NMs specifically, considering that the release of NMs into the environment is yet to be explored due to limited understanding of the mechanisms and pathways involved.
Rice Straw Utilisation for Bioenergy Production: A Brief Overview
Unsustainable rice straw management causes environmental impacts; hence, utilisation of rice straw for bioenergy is a promising strategy for sustainable rice straw management. Although rice straw has a high potential for bioenergy generation, the whole production cycle and application may cause environmental damage that is not fully understood. Hence, environmental performance studies are required to determine the most effective rice straw utilisation options. A comprehensive approach, such as life-cycle assessment (LCA), can give comprehensive information on the possible environmental effects of rice straw utilisation for bioenergy. Therefore, this study briefly overviews the LCA of rice straw utilisation for bioenergy production. It is found that utilisation of rice straw for bioenergy could reduce global warming potential compared to energy production from fossil fuels. However, it is suggested that other impact categories in LCA be evaluated in the bioenergy production from rice straw research to determine the overall sustainability of the production.
The Benefits and Challenges of Antibiotics–Non-Steroidal Anti-Inflammatory Drugs Non-Covalent Reaction
Recently, non-covalent reactions have emerged as approaches to improve the physicochemical properties of active pharmaceutical ingredients (API), including antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs). This review aimed to present and discuss the non-covalent reaction products of antibiotics, including salt and neutral multi-component solid forms, by framing their substituents and molar ratios, manufacturing techniques, characterization methods, benefits, potency changes, and toxicity, and is completed with an analysis of the development of computational models used in this field. Based on the data, NSAIDs are the most-developed drugs in multi-component system preparations, followed by antibiotics, i.e., antituberculosis and fluoroquinolones. They have reacted with inorganic elements, excipients, nutraceuticals, natural products, and other drugs. However, in terms of treatments for common infections, fluoroquinolones are more frequently used. Generally, NSAIDs are acquired on an over-the-counter basis, causing inappropriate medication. In addition, the pKa differences between the two groups of medicine offer the potential for them to react non-covalently. Hence, this review highlights fluoroquinolone–NSAID multi-component solid systems, which offer some benefits. These systems can increase patient compliance and promote the appropriate monitoring of drug usage; the dual drug multi-component solids have been proven to improve the physicochemical properties of one or both components, especially in terms of solubility and stability. In addition, some reports show an enhancement of the antibiotic activity of the products. However, it is important to consider the possibility of activity changes, interaction, and toxicity when using drug combinations. Hence, these aspects also are discussed in this review. Finally, we present computational modeling, which has been utilized broadly to support multi-component system designs, including coformer screening, preparation methods, and structural modeling, as well as to predict physicochemical properties, potency, and toxicity. This integrated review is expected to be useful for further antibiotic–NSAID multi-component system development.
Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater
The lack of clean water sources, due to the presence of pollutants in water, is a major issue in many countries, including Malaysia. To overcome this problem, various methods have been introduced, including phytoremediation treatment. Therefore, this phytoremediation study examined the ability of five aquatic plants—Centella asiatica, Ipomoea aquatica, Salvinia molesta, Eichhornia crassipes, and Pistia stratiotes—to remove three pollutants—total suspended solids (TSS), ammoniacal nitrogen (NH3-N), and phosphate—from aquaculture wastewater. Using wastewater samples, each containing 50 g of one of the plants, the pollutant levels were measured every two days for 14 days. The results showed a drastic decline in the concentration of pollutants, where C. asiatica was able to remove 98% of NH3-N, 90% of TSS, and 64% of phosphate, while I. aquatica showed the potential to eliminate up to 73% of TSS and NH3-N, and 50% of phosphate. E. crassipes drastically removed 98% of phosphate, 96% of TSS, and 74% of NH3-N, while P. stratiotes was able to eliminate 98% of TSS, 78% of NH3-N, and 89% of phosphate. S. molesta was efficient in removing 89.3% of TSS and 88.6% of phosphate, but only removed 63.9% of NH3-N.