Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "Maron, Pierre-Alain"
Sort by:
Impact of farming systems on soil ecological quality: a meta-analysis
The productivist model implemented after the second world war has succeeded in improving production to meet growing demands for food, but it has also deeply affected soil physicochemical properties, as well as of aboveground and belowground biodiversity. Alternative farming systems such as organic farming, biodynamic farming and soil conservation farming are actually developing to enhance the sustainability of farming systems. Although the impact of agricultural practices on soil ecological quality is well known, there is little knowledge on the impact of the different farming systems as a whole. Here, we analysed the impact of the main farming systems on soil biodiversity and functioning, reported in about 100 scientific publications. We found that conventional, organic, and biodynamic systems are the most widely studied, whereas soil conservation farming is poorly documented. Soil biological indicators are improved by ca. 70% in organic farming and biodynamic farming relative to conventional farming. 43% of soil bioindicators are improved in biodynamic farming relatively to organic farming. Soil conservation farming scores better than conventional farming for 57% of the indicators. Therefore, biodynamic farming displays the highest soil ecological quality, followed by organic farming, soil conservation farming and, last, conventional farming. Organic fertilisation and longer crop rotations are the most favourable practices, whereas pesticides and soil tillage are the most deleterious ones. The review also evidences a lack of studies on soil conservation farming and on bioindicators of the soil fauna.
Loss in microbial diversity affects nitrogen cycling in soil
Microbial communities have a central role in ecosystem processes by driving the Earth’s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/10 3 and 1/10 5 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.
Microbial diversity and ecological networks as indicators of environmental quality
Evaluating the quality of ecosystems in terms of biological patrimony and functioning is of critical importance in the actual context of intensified human activities. Microbial diversity is commonly used as a bioindicator of ecosystems functioning. However, there is a lack of sensitivity of microbial diversity indicators in the case of moderate and chronic environmental degradation, such as atmospheric deposition of pollutants, agricultural practices, diffuse pollution by wastewater and climate change. As a consequence, there is a need for alternative bioindicators of soils and water quality. Here, we discuss the interest of adopting a more integrative approach based on biotic interaction networks beyond the simple diversity indicators. We review how the various biotic interactions can be integrated in the various microbial networks such as trophic, mutualistic and co-occurrence networks. Then we discuss the efficiency of microbial networks and associated metrics to detect changes in microbial communities. We conclude that the connectance, the number of links and the average degree of co-occurrence networks could vary from 10 to 50% in response to minor perturbations when microbial diversity parameters remain stable. Finally, we analyze studies that aimed at linking microbial networks and activity to evaluate the potential of such networks for providing simple and operational indicators of ecosystem quality and functioning.
Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar
The priming effect in soil is proposed to be generated by two distinct mechanisms: ‘stoichiometric decomposition’ and/or ‘nutrient mining’ theories. Each mechanism has its own dynamics, involves its own microbial actors, and targets different soil organic matter (SOM) pools. The present study aims to evaluate how climatic parameters drive the intensity of each priming effect generation mechanism via the modification of soil microbial and physicochemical properties. Soils were sampled in the center of Madagascar, along climatic gradients designed to distinguish temperature from rainfall effects. Abiotic and biotic soil descriptors were characterized including bacterial and fungal phylogenetic composition. Potential organic matter mineralization and PE were assessed 7 and 42 days after the beginning of incubation with 13 C-enriched wheat straw. Both priming mechanisms were mainly driven by the mean annual temperature but in opposite directions. The priming effect generated by stoichiometric decomposition was fostered under colder climates, because of soil enrichment in less developed organic matter, as well as in fast-growing populations. Conversely, the priming effect generated by nutrient mining was enhanced under warmer climates, probably because of the lack of competition between slow-growing populations mining SOM and fast-growing populations for the energy-rich residue entering the soil. Our study leads to hypotheses about the consequences of climate change on both PE generation mechanisms and associated consequences on soil carbon sequestration.
Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards
Copper has been successfully used in the sulfate form as a fungicide to control grapevine diseases since 150 years, yet high Cu accumulation in vineyards may alter soil life. Although actual Cu additions are about tenfold lower than 50 years ago, the use of Cu in the context of the agroecological transition is still debated. Indeed, copper is one of the rare pesticides allowed for organic farming. Therefore, we performed a meta-analysis on Cu ecotoxicity by selecting 19 articles out of 300 articles relevant to copper and soil biological quality. Results show that microbial activity decreased by 30% when more than 400 kg of Cu was applied yearly per ha. Nematodes abundance remained unchanged for copper application up to 3200 kg/ha/year. Collembola and enchytraeid reproduction declined by 50% after application of 400 and 1895 kg Cu/ha/year, respectively. Earthworm biomass was reduced by 15% after application of 200 kgCu/ha/year. For soil Cu levels higher than 200 kg Cu/ha, microbial respiration decreased by 50% and no effect was observed on collembola. Overall, while toxicity is observed, the corresponding literature investigations involved Cu levels that are at least 50 times higher than the dose of 4 kg Cu/ha/year currently authorized by the European Commission for viticulture. As a consequence, applying copper at 4 kg/ha/year should not modify substantially soil biological quality and functions.
Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of Soil Priming Effect
The turnover of organic matter in soil depends on the activity of microbial decomposers. However, little is known about how modifications of the diversity of soil microbial communities induced by fresh organic matter (FOM) inputs can regulate carbon cycling. Here, we investigated the decomposition of two 13 C labeled crop residues (wheat and alfalfa) and the dynamics of the genetic structure and taxonomic composition of the soil bacterial communities decomposing 13 C labeled FOM and native unlabeled soil organic matter (SOM), respectively. It was achieved by combining the stable isotope probing method with molecular tools (DNA genotyping and pyrosequencing of 16S rDNA). Although a priming effect (PE) was always induced by residue addition, its intensity increased with the degradability of the plant residue. The input of both wheat and alfalfa residues induced a rapid dynamics of FOM-degrading communities, corresponding to the stimulation of bacterial phyla which have been previously described as copiotrophic organisms. However, the dynamics and the identity of the bacterial groups stimulated depended on the residue added, with Firmicutes dominating in the wheat treatment and Proteobacteria dominating in the alfalfa treatment after 3 days of incubation. In both treatments, SOM-degrading communities were dominated by Acidobacteria, Verrucomicrobia, and Gemmatimonadetes phyla which have been previously described as oligotrophic organisms. An early stimulation of SOM-degrading populations mainly belonging to Firmicutes and Bacteroidetes groups was observed in the alfalfa treatment whereas no change occurred in the wheat treatment. Our findings support the hypothesis that the succession of bacterial taxonomic groups occurring in SOM- and FOM-degrading communities during the degradation process may be an important driver of the PE, and consequently of carbon dynamics in soil.
Metagenomics reveals contrasted responses of microbial communities to wheat straw amendment in cropland and grassland soils
Soil microbial communities respond quickly to natural and/or anthropic-induced changes in environmental conditions. Metagenomics allows studying taxa that are often overlooked in microbiota studies, such as protists or viruses. Here, we employed metagenomics to characterise microbial successions after wheat straw input in a 4-month in-situ field study. We compared microbial successions patterns with those obtained by high throughput amplicon sequencing on the same soil samples to validate metagenomics as a tool for the fine analysis of microbial population dynamics in situ. Taxonomic patterns were concordant between the two methodologies but metagenomics allowed studying all the microbial groups simultaneously. Notably, our results evidenced that each domain displayed a specific dynamic pattern after wheat straw amendment. For instance, viral sequences multiplied in the early phase of straw decomposition, in parallel to copiotrophic bacteria, suggesting a “kill-the-winner” pattern that, to our knowledge, had not been observed before in soil. Altogether, our results highlighted that both inter and intra-domain trophic interactions were impacted by wheat amendment and these patterns depended on the land use history. Our study highlights that top-down regulation by microbial predators or viruses might play a key role in soil microbiota dynamics and structure.
Microbial Diversity and Structure Are Drivers of the Biological Barrier Effect against Listeria monocytogenes in Soil
Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.
Mapping and predictive variations of soil bacterial richness across France
Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition.
Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil
Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland). Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.