Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Marquart, Louise"
Sort by:
Evaluation of safety and immunogenicity of a group A streptococcus vaccine candidate (MJ8VAX) in a randomized clinical trial
Group A streptococcus (GAS) is a serious human pathogen that affects people of different ages and socio-economic levels. Although vaccination is potentially one of the most effective methods to control GAS infection and its sequelae, few prototype vaccines have been investigated in humans. In this study, we report the safety and immunogenicity of a novel acetylated peptide-protein conjugate vaccine candidate MJ8VAX (J8-DT), when delivered intramuscularly to healthy adults. A randomized, double-blinded, controlled Phase I clinical trial was conducted in 10 healthy adult participants. Participants were randomized 4:1 to receive the vaccine candidate (N = 8) or placebo (N = 2). A single dose of the vaccine candidate (MJ8VAX), contained 50 μg of peptide conjugate (J8-DT) adsorbed onto aluminium hydroxide and re-suspended in PBS in a total volume of 0.5 mL. Safety of the vaccine candidate was assessed by monitoring local and systemic adverse reactions following intramuscular administration. The immunogenicity of the vaccine was assessed by measuring the levels of peptide (anti-J8) and toxoid carrier (anti-DT)-specific antibodies in serum samples. No serious adverse events were reported over 12 months of study. A total of 13 adverse events (AEs) were recorded, two of which were assessed to be associated with the vaccine. Both were mild in severity. No local reactogenicity was recorded in any of the participants. MJ8VAX was shown to be immunogenic, with increase in vaccine-specific antibodies in the participants who received the vaccine. The maximum level of vaccine-specific antibodies was detected at 28 days post immunization. The level of these antibodies decreased with time during follow-up. Participants who received the vaccine also had a corresponding increase in anti-DT serum antibodies. Intramuscular administration of MJ8VAX was demonstrated to be safe and immunogenic. The presence of DT in the vaccine formulation resulted in a boost in the level of anti-DT antibodies. ACTRN12613000030774.
Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study
DSM265 is a novel antimalarial that inhibits plasmodial dihydroorotate dehydrogenase, an enzyme essential for pyrimidine biosynthesis. We investigated the safety, tolerability, and pharmacokinetics of DSM265, and tested its antimalarial activity. Healthy participants aged 18–55 years were enrolled in a two-part study: part 1, a single ascending dose (25–1200 mg), double-blind, randomised, placebo-controlled study, and part 2, an open-label, randomised, active-comparator controlled study, in which participants were inoculated with Plasmodium falciparum induced blood-stage malaria (IBSM) and treated with DSM265 (150 mg) or mefloquine (10 mg/kg). Primary endpoints were DSM265 safety, tolerability, and pharmacokinetics. Randomisation lists were created using a validated, automated system. Both parts were registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12613000522718 (part 1) and number ACTRN12613000527763 (part 2). In part 1, 73 participants were enrolled between April 12, 2013, and July 14, 2015 (DSM265, n=55; placebo, n=18). In part 2, nine participants were enrolled between Sept 30 and Nov 25, 2013 (150 mg DSM265, n=7; 10 mg/kg mefloquine, n=2). In part 1, 117 adverse events were reported; no drug-related serious or severe events were reported. The most common drug-related adverse event was headache. The mean DSM265 peak plasma concentration (Cmax) ranged between 1310 ng/mL and 34 800 ng/mL and was reached in a median time (tmax) between 1·5 h and 4 h, with a mean elimination half-life between 86 h and 118 h. In part 2, the log10 parasite reduction ratio at 48 h in the DSM265 (150 mg) group was 1·55 (95% CI 1·42–1·67) and in the mefloquine (10 mg/kg) group was 2·34 (2·17–2·52), corresponding to a parasite clearance half-life of 9·4 h (8·7–10·2) and 6·2 h (5·7–6·7), respectively. The median minimum inhibitory concentration of DSM265 in blood was estimated as 1040 ng/mL (range 552–1500), resulting in a predicted single efficacious dose of 340 mg. Parasite clearance was significantly faster in participants who received mefloquine than in participants who received DSM265 (p<0·0001). The good safety profile, long elimination half-life, and antimalarial effect of DSM265 supports its development as a partner drug in a single-dose antimalarial combination treatment. Wellcome Trust, UK Department for International Development, Global Health Innovative Technology Fund, Bill & Melinda Gates Foundation.
Misspecification of multimodal random-effect distributions in logistic mixed models for panel survey data
Logistic mixed models for longitudinal binary data typically assume normally distributed random effects, which may be too restrictive if an underlying subpopulation structure exists. The paper illustrates the ease of implementing diagnostic tests and fitting random effects as a mixture of normal distributions to detect and address distributional misspecification of the random effects in a potential mover–stayer scenario. Methods are illustrated by using data from the Household, Income and Labour Dynamics in Australia panel survey. The robustness of the normality assumption to violations characterized by a three-component mixture of normal distributions was assessed via a simulation study. Adverse inferential impact of incorrectly assuming normality was identified for parameters directly related to the random effects, resulting in biased estimates and poor coverage rates for confidence intervals. The results support the general robustness of fixed effect parameters to non-extreme distributional violations of the random effects.
A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study
Background Ferroquine (SSR97193) is a candidate anti-malarial currently undergoing clinical trials for malaria. To better understand its pharmacokinetic (PK) and pharmacodynamic (PD) parameters the compound was tested in the experimentally induced blood stage malaria infection model in volunteers. Methods Male and non-pregnant female aged 18–50 years were screened for this phase II, controlled, single-centre clinical trial. Subjects were inoculated with ~1800 viable Plasmodium falciparum 3D7A-infected human erythrocytes, and treated with a single-dose of 800 mg ferroquine. Blood samples were taken at defined time-points to measure PK and PD parameters. The blood concentration of ferroquine and its active metabolite, SSR97213, were measured on dry blood spot samples by ultra-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Parasitaemia and emergence of gametocytes were monitored by quantitative PCR. Safety was determined by recording adverse events and monitoring clinical laboratory assessments during the course of the study. Results Eight subjects were enrolled into the study, inoculated with infected erythrocytes and treated with 800 mg ferroquine. Ferroquine was rapidly absorbed with maximal exposure after 4–8 and 4–12 h exposure for SSR97213. Non-compartmental PK analysis resulted in estimates for half-lives of 10.9 and 23.8 days for ferroquine and SSR97213, respectively. Parasite clearance as reported by parasite reduction ratio was 162.9 (95 % CI 141–188) corresponding to a parasite clearance half-life of 6.5 h (95 % CI: 6.4–6.7 h). PK/PD modelling resulted in a predicted minimal parasiticidal concentration of 20 ng/mL, and the single dosing tested in this study was predicted to maintain an exposure above this threshold for 454 h (37.8 days). Although ferroquine was overall well tolerated, transient elevated transaminase levels were observed in three subjects. Paracetamol was the only concomitant treatment among the two out of these three subjects that may have played a role in the elevated transaminases levels. No clinically significant ECG abnormalities were observed. Conclusions The parameters and PK/PD model derived from this study pave the way to the further rational development of ferroquine as an anti-malarial partner drug. The safety of ferroquine has to be further explored in controlled human trials. Trial registration anzctr.org.au (registration number: ACTRN12613001040752), registered 18/09/2013
Safety and parasite clearance of artemisinin-resistant Plasmodium falciparum infection: A pilot and a randomised volunteer infection study in Australia
[...]we conducted a pilot study in which we inoculated participants with ART-R P. falciparum parasites harbouring the kelch13 gene mutation R539T (K13R539T strain) [4] to determine the safety, tolerability, and clearance of infection with ART-R parasites. Methods Study design We conducted 2 consecutive phase 1, single-centre, open-label studies: a pilot study and a randomised study. ART-R, artemisinin-resistant; ART-S, artemisinin-sensitive; A/P, atovaquone/proguanil; AS, artesunate; DHA/PQP, dihydroartemisinin/piperaquine phosphate; IV, intravenously; PQ, primaquine; qPCR, quantitative PCR https://doi.org/10.1371/journal.pmed.1003203.g001 Development of parasitaemia was monitored daily from Day 3 (pilot study Participant 1) or Day 4 (pilot study Participant 2 and comparative study) until parasites were detected by qPCR, then twice daily until AS administration. Outcomes A primary outcome of both studies was safety and tolerability of infection with ART-R parasites (and of ART-S parasites in the comparative study only), determined by evaluating adverse events, physical examinations, vital signs, clinical biochemistry, haematology, and urinalysis.
Evaluation of a multiphasic parasite clearance profile after treatment of experimental human infection with the investigational anti-malarial M5717 using segmented mixed effect models
Background Evaluation of parasite clearance patterns in experimental human infection trials helps increase understanding of drug action. In a previously reported phase Ib trial of a new investigational anti-malarial drug M5717, parasite clearance showed a biphasic linear pattern: slow removal phase with a near flat clearance rate followed by a fast clearance phase with a steep slope. In this study three statistical approaches were implemented and compared to estimate the parasite clearance rate for each phase and the time point corresponding to the change of clearance rates (changepoint between the two phases). Methods Data using three M5717 doses 150 mg (n = 6), 400 mg (n = 8), 800 mg (n = 8) were used to estimate biphasic clearance rates. Three models were investigated: firstly, segmented mixed models with estimated changepoint—models with/without random effects in various parameters were compared. Secondly, a segmented mixed model using grid search—this method is similar to the first except that changepoints were not estimated, instead they were selected based on model fit from given candidate values. Thirdly, a two-stage approach whereby a segmented regression model fit to each participant followed by a meta-analysis method. Hourly rate of parasite clearance (HRPC) interpreted as the percentage of parasites removed each hour was calculated. Results The three models generated similar results. Using segmented mixed models, the estimated changepoints after treatment in hours (95% CI) were: 150 mg: 33.9 (28.7, 39.1); 400 mg: 57.4 (52.5, 62.4); and 800 mg: 52.8 (47.4, 58.1). For all three treatment groups, there was nearly no clearance before the changepoints, but rapid clearance in the second phase (HRPC [95% CI]): 150 mg: 16.8% (14.3, 19.1%); 400 mg: 18.6% (16.0, 21.1%); and 800 mg: 11.7% (9.3, 14.1%). Conclusions All three statistical approaches are effective tools to characterize the bi-phasic clearance of M5717 in the phase 1b experimental Plasmodium falciparum malaria human infection study. The statistical approaches produced similar results to estimate the two-phase clearance rates and the changepoint for each treatment dose of M5717. However, the segmented mixed model with random changepoints has several advantages: it is computationally efficient, provides precision for changepoint estimates and is robust concerning outlying datapoints or individuals.
Characterizing the pharmacological interaction of the antimalarial combination artefenomel-piperaquine in healthy volunteers with induced blood-stage Plasmodium falciparum to predict efficacy in patients with malaria
Background The combination antimalarial artefenomel-piperaquine failed to achieve target efficacy in a phase 2b study in Africa and Vietnam. We retrospectively evaluated whether characterizing the pharmacological interaction of this antimalarial combination in a volunteer infection study (VIS) would have enabled prediction of the phase 2b study results. Methods Twenty-four healthy adults enrolled over three consecutive cohorts were inoculated with Plasmodium falciparum -infected erythrocytes on day 0. Participants were randomized within each cohort to one of seven dose combination groups and administered a single oral dose of artefenomel-piperaquine on day 8. Participants received definitive antimalarial treatment with artemether-lumefantrine upon parasite regrowth or on day 42 ± 2. The general pharmacodynamic interaction (GPDI) model implemented in the Bliss Independence additivity criterion was developed to characterize the pharmacological interaction between artefenomel and piperaquine. Simulations based on the model were performed to predict the outcomes of the phase 2b combination study. Results For a dose of 800 mg artefenomel administered with 640 mg, 960 mg, or 1440 mg piperaquine, the simulated adequate parasitological response at day 28 (APR 28 ), incorporating actual patient pharmacokinetic (PK) data from the phase 2b trial, was 69.4%, 63.9%, and 74.8%, respectively. These results closely matched the observed APR 28 in the phase 2b trial of 67.0%, 65.5%, and 75.4%, respectively. Conclusions These results indicate that VIS offer an efficient means for informing antimalarial combination trials conducted in the field, potentially expediting clinical development. Trial registration This study was registered on ClinicalTrials.gov on 11 May 2018 with registration number NCT03542149.
A Pilot Randomised Trial of Induced Blood-Stage Plasmodium falciparum Infections in Healthy Volunteers for Testing Efficacy of New Antimalarial Drugs
Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP). The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L) or atovaquone-proguanil (A/P). In the first cohort (n = 6) where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6). In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7) The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01). This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. ClinicalTrials.gov NCT01055002.
The in-vivo dynamics of Plasmodium falciparum HRP2: implications for the use of rapid diagnostic tests in malaria elimination
Background Rapid diagnostic tests (RDTs) that rely on the detection of Plasmodium falciparum histidine-rich protein 2 ( Pf HRP2) have become key tools for diagnosing P. falciparum infection. The utility of RDTs can be limited by Pf HRP2 persistence, however it can be a potential benefit in low transmission settings where detection of persistent Pf HRP2 using newer ultra-sensitive Pf HRP2 based RDTs can serve as a surveillance tool to identify recent exposure. Better understanding of the dynamics of Pf HRP2 over the course of a malaria infection can inform optimal use of RDTs. Methods A previously published mathematical model was refined to mimic the production and decay of Pf HRP2 during a malaria infection. Data from 15 individuals from volunteer infection studies were used to update the original model and estimate key model parameters. The refined model was applied to a cohort of patients from Namibia who received treatment for clinical malaria infection for whom longitudinal Pf HRP2 concentrations were measured. Results The refinement of the Pf HRP2 dynamic model indicated that in malaria naïve hosts, P. falciparum parasites of the 3D7 strain produce 33.6 × 10 −15  g (95% CI 25.0–42.1 × 10 −15  g) of Pf HRP2 in vivo per parasite replication cycle, with an elimination half-life of 1.67 days (95% CI 1.11–3.40 days). The refined model included these updated parameters and incorporated individualized body fluid volume calculations, which improved predictive accuracy when compared to the original model. The performance of the model in predicting clearance of Pf HRP2 post treatment in clinical samples from six adults with P. falciparum infection in Namibia improved when using a longer elimination half-life of 4.5 days, with 14% to 67% of observations for each individual within the predicted range. Conclusions The updated mathematical model can predict the growth and clearance of Pf HRP2 during the production and decay of a mono-infection with P. falciparum , increasing the understanding of Pf HRP2 antigen dynamics. This model can guide the optimal use of Pf HRP2-based RDTs for reliable diagnosis of P. falciparum infection and re-infection in endemic settings, but also for malaria surveillance and elimination programmes in low transmission areas.
Haematological response in experimental human Plasmodium falciparum and Plasmodium vivax malaria
Background Malaria-associated anaemia, arising from symptomatic, asymptomatic and submicroscopic infections, is a significant cause of morbidity worldwide. Induced blood stage malaria volunteer infection studies (IBSM-VIS) provide a unique opportunity to evaluate the haematological response to early Plasmodium falciparum and Plasmodium vivax infection. Methods This study was an analysis of the haemoglobin, red cell counts, and parasitaemia data from 315 participants enrolled in IBSM-VIS between 2012 and 2019, including 269 participants inoculated with the 3D7 strain of P. falciparum (Pf3D7), 15 with an artemisinin-resistant P. falciparum strain (PfK13) and 46 with P. vivax . Factors associated with the fractional fall in haemoglobin (Hb-FF) were evaluated, and the malaria-attributable erythrocyte loss after accounting for phlebotomy-related losses was estimated. The relative contribution of parasitized erythrocytes to the malaria-attributable erythrocyte loss was also estimated. Results The median peak parasitaemia prior to treatment was 10,277 parasites/ml (IQR 3566–27,815), 71,427 parasites/ml [IQR 33,236–180,213], and 34,840 parasites/ml (IQR 13,302–77,064) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. The median Hb-FF was 10.3% (IQR 7.8–13.3), 14.8% (IQR 11.8–15.9) and 11.7% (IQR 8.9–14.5) in those inoculated with Pf3D7, PfK13 and P. vivax , respectively, with the haemoglobin nadir occurring a median 12 (IQR 5–21), 15 (IQR 7–22), and 8 (IQR 7–15) days following inoculation. In participants inoculated with P. falciparum , recrudescence was associated with a greater Hb-FF, while in those with P. vivax , the Hb-FF was associated with a higher pre-treatment parasitaemia and later day of anti-malarial treatment. After accounting for phlebotomy-related blood losses, the estimated Hb-FF was 4.1% (IQR 3.1–5.3), 7.2% (IQR 5.8–7.8), and 4.9% (IQR 3.7–6.1) in participants inoculated with Pf3D7, PfK13, and P. vivax , respectively. Parasitized erythrocytes were estimated to account for 0.015% (IQR 0.006–0.06), 0.128% (IQR 0.068–0.616) and 0.022% (IQR 0.008–0.082) of the malaria-attributable erythrocyte loss in participants inoculated with Pf3D7, PfK13, and P. vivax , respectively. Conclusion Early experimental P. falciparum and P. vivax infection resulted in a small but significant fall in haemoglobin despite parasitaemia only just at the level of microscopic detection. Loss of parasitized erythrocytes accounted for < 0.2% of the total malaria-attributable haemoglobin loss.