Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
186 result(s) for "Marsh, Stuart"
Sort by:
InfraRed Thermography and 3D-Data Fusion for Architectural Heritage: A Scoping Review
Comprehensive documentation is the foundation of effective conservation, repair and maintenance (CRM) practices for architectural heritage. In order to diagnose historic buildings and inform decision making, a combination of multi-disciplinary surveys is fundamental to understanding a building’s heritage and performance. Infrared thermography (IRT), a non-contact, non-invasive and non-destructive imaging technique, allows both qualitative and quantitative assessments of temperature to be undertaken. However, the inherent low spatial resolution of thermal imaging has led recent work to fuse thermographic and geometric data for the accurate 3D documentation of architectural heritage. This paper maps the scope of this emerging field to understand the application of IRT and 3D-data fusion (IRT-3DDF) for architectural heritage. A scoping review is undertaken to systematically map the current literature and determine research gaps and future trends. Results indicate that the increasing availability of thermal cameras and advances in photogrammetric software are enabling thermal models to be generated successfully for the diagnosis and holistic management of architectural heritage. In addition, it is evident that IRT-3DDF provides several opportunities for additional data integration, historic building information modelling (H-BIM) and temporal analysis of historic buildings. Future developments are needed to transform IRT-3DDF findings into actionable insights and to apply IRT-3DDF to pressing climate-related challenges, such as energy efficiency, retrofitting and thermal comfort assessments.
Lessons for Sustainable Urban Development: Interplay of Construction, Groundwater Withdrawal, and Land Subsidence at Battersea, London
The capacity of aquifers to store water and the stability of infrastructure can each be adversely influenced by variations in groundwater levels and subsequent land subsidence. Along the south bank of the River Thames, the Battersea neighbourhood of London is renovating a vast 42-acre (over 8 million sq ft) former industrial brownfield site to become host to a community of homes, shops, bars, restaurants, cafes, offices, and over 19 acres of public space. For this renovation, between 2016 and 2020, a significant number of bearing piles and secant wall piles, with diameters ranging from 450 mm to 2000 mm and depths of up to 60 m, were erected inside the Battersea Power Station. Additionally, there was considerable groundwater removal that caused the water level to drop by 2.55 ± 0.4 m/year between 2016 and 2020, as shown by Environment Agency data. The study reported here used Sentinel-1 C-band radar images and the persistent scatterer interferometric synthetic aperture radar (PSInSAR) methodology to analyse the associated land movement for Battersea, London, during this period. The average land subsidence was found to occur at the rate of −6.8 ± 1.6 mm/year, which was attributed to large groundwater withdrawals and underground pile construction for the renovation work. Thus, this study underscores the critical interdependence between civil engineering construction, groundwater management, and land subsidence. It emphasises the need for holistic planning and sustainable development practices to mitigate the adverse effects of construction on groundwater resources and land stability. By considering the Sustainable Development Goals (SDGs) outlined by the United Nations, particularly Goal 11 (Sustainable Cities and Communities) and Goal 6 (Clean Water and Sanitation), city planners and stakeholders can proactively address these interrelated challenges.
Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model
Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.
Comparative Study of Groundwater-Induced Subsidence for London and Delhi Using PSInSAR
Groundwater variation can cause land-surface movement, which in turn can cause significant and recurrent harm to infrastructure and the water storage capacity of aquifers. The capital cities in the England (London) and India (Delhi) are witnessing an ever-increasing population that has resulted in excess pressure on groundwater resources. Thus, monitoring groundwater-induced land movement in both these cities is very important in terms of understanding the risk posed to assets. Here, Sentinel-1 C-band radar images and the persistent scatterer interferometric synthetic aperture radar (PSInSAR) methodology are used to study land movement for London and National Capital Territory (NCT)-Delhi from October 2016 to December 2020. The land movement velocities were found to vary between −24 and +24 mm/year for London and between −18 and +30 mm/year for NCT-Delhi. This land movement was compared with observed groundwater levels, and spatio-temporal variation of groundwater and land movement was studied in conjunction. It was broadly observed that the extraction of a large quantity of groundwater leads to land subsidence, whereas groundwater recharge leads to uplift. A mathematical model was used to quantify land subsidence/uplift which occurred due to groundwater depletion/rebound. This is the first study that compares C-band PSInSAR-derived land subsidence response to observed groundwater change for London and NCT-Delhi during this time-period. The results of this study could be helpful to examine the potential implications of ground-level movement on the resource management, safety, and economics of both these cities.
Coastal Sediment Grain Size Estimates on Gravel Beaches Using Satellite Synthetic Aperture Radar (SAR)
Coastal sediment grain size is an important factor in determining coastal morphodynamics. In this study, we explore a novel approach for retrieving the median sediment grain size (D50) of gravel-dominated beaches using Synthetic Aperture Radar (SAR) spaceborne imagery. We assessed this by using thirty-six Sentinel-1 (C-band SAR) satellite images acquired in May and June 2022 and 2023, and three NovaSAR (S-band SAR) satellite images acquired in May and June 2022, for three different training sites and one test site across England (the UK). The results from the Sentinel-1 C-band data show strong positive correlations (R2≥0.75) between the D50 and the backscatter coefficients for 15/18 of the resultant models. The models were subsequently used to derive predictions of D50 for the test site, with the models which exhibited the strongest correlations resulting in Mean Absolute Errors (MAEs) in the range 2.26–5.47 mm. No correlation (R2 = 0.04) was found between the backscatter coefficients from the S-band NovaSAR data and D50. These results highlight the potential to derive near-real time estimates of coastal sediment grain size for gravel beaches to better inform coastal erosion and monitoring programs.
Monitoring of Ground Movement and Groundwater Changes in London Using InSAR and GRACE
Groundwater-induced land movement can cause damage to property and resources, thus its monitoring is very important for the safety and economics of a city. London is a heavily built-up urban area and relies largely on its groundwater resource and thus poses the threat of land subsidence. Interferometric Synthetic Aperture Radar (InSAR) can facilitate monitoring of land movement and Gravity Recovery and Climate Experiment (GRACE) gravity anomalies can facilitate groundwater monitoring. For London, no previous study has investigated groundwater variations and related land movement using InSAR and GRACE together. In this paper, we used ENVISAT ASAR C-band SAR images to obtain land movement using Persistent Scatterer InSAR (PSInSAR) technique and GRACE gravity anomalies to obtain groundwater variations between December 2002 and December 2010 for central London. Both experiments showed long-term, decreasing, complex, non-linear patterns in the spatial and temporal domain. The land movement values varied from −6 to +6 mm/year, and their reliability was validated with observed Global Navigation Satellite System (GNSS) data, by conducting a two-sample t-test. The average groundwater loss estimated from GRACE was found to be 9.003 MCM/year. The ground movement was compared to observed groundwater values obtained from various boreholes around central London. It was observed that when large volumes of groundwater is extracted then it leads to land subsidence, and when groundwater is recharged then surface uplift is witnessed. The results demonstrate that InSAR and GRACE complement each other and can be an excellent source of monitoring groundwater for hydrologists.
Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland
Satellite Earth Observation (EO) is often used as a cost-effective method to report on the condition of remote and inaccessible peatland areas. Current EO techniques are primarily limited to reporting on the vegetation classes and properties of the immediate peat surface using optical data, which can be used to infer peatland condition. Another useful indicator of peatland condition is that of surface motion, which has the potential to report on mass accumulation and loss of peat. Interferometic SAR (InSAR) techniques can provide this using data from space. However, the most common InSAR techniques for information extraction, such as Persistent Scatterers’ Interferometry (PSI), have seen limited application over peat as they are primarily tuned to work in areas of high coherence (i.e., on hard, non-vegetated surfaces only). A new InSAR technique, called the Intermittent Small BAseline Subset (ISBAS) method, has been recently developed to provide measurements over vegetated areas from SAR data acquired by satellite sensors. This paper examines the feasibility of the ISBAS technique for monitoring long-term surface motion over peatland areas of the Flow Country, in the northeast of Scotland. In particular, the surface motions estimated are compared with ground data over a small forested area (namely the Bad a Cheo forest Reserve). Two sets of satellite SAR data are used: ERS C-band images, covering the period 1992–2000, and Sentinel-1 C-band images, covering the period 2015–2016. We show that the ISBAS measurements are able to identify surface motion over peatland areas, where subsidence is a consequence of known land cover/land use. In particular, the ISBAS products agree with the trend of surface motion, but there are uncertainties with their magnitude and direction (vertical). It is concluded that there is a potential for the ISBAS method to be able to report on trends in subsidence and uplift over peatland areas, and this paper suggests avenues for further investigation, but this requires a well-resourced validation campaign.
Study of Ground Movement in a Mining Area with Geological Faults Using FDM Analysis and a Stacking InSAR Method
Underground coal mining activities and ground movement are directly correlated, and coal mining-induced ground movement can cause damage to property and resources, thus its monitoring is essential for the safety and economics of a city. Fangezhuang coal mine is one of the largest coalfields in operation in Tangshan, China. The enormous amount of coal extraction has resulted in significant ground movement over the years. These phenomena have produced severe damages to the local infrastructure. This paper uses the finite difference method (FDM) 3D model and the stacking interferometric synthetic aperture radar (InSAR) method to monitor the ground movement in Fangezhuang coalfield during 2016. The FDM 3D model used calibrated Fangezhuang geological parameters and the satellite InSAR analysis involved the use of ascending C-band Sentinel-1A interferometric wide (IW) data for 2016. The results show that the most prominent subsidence signal occurs in mining panel 2553N and the area between panel 2553N and fault F0 with subsidence up to 57 cm. The subsidence observed for the FDM 3D model and stacking InSAR to monitor land deformation under the influence of fault are in close agreement and were verified using a two-sample t -test. It was observed that the maximum subsidence point shifted towards the fault location from the centre of the mining panel. The tectonic fault F0 was found to be reactivated by the coal mining and controls the spatial extent of the observed ground movement. The impact of dominant geological faults on local subsidence boundaries is investigated in details. It is concluded that ground movement in the study area was mainly induced by mining activities, with its spatial pattern being controlled by geological faults. These results highlight that the two methods are capable of measuring mining induced ground movement in fault dominated areas. The study will improve the understanding of subsidence control, and aid in developing preventive measures in Fangezhuang coalfield with fault reactivation.
Monitoring the Dynamics of Formby Sand Dunes Using Airborne LiDAR DTMs
Coastal dunes play an important role in coastal erosion risk management, where they act as a dynamic natural sea defence line. Formby coast is part of the Sefton coast in the Northwest of England and is one of the largest and most rapidly evolving sand dune systems in the UK. Such dune systems require continuous comprehensive monitoring activity to understand their dynamics. In this research, we investigate the use of airborne LiDAR digital terrain model DTMs for monitoring the dynamics of the sand dunes at Formby between 1999 and 2020. We found that the rate of elevation change for the beach and the dune areas ranges from −0.78 to 0.02 m/year and −0.92 to 0.73 m/year, respectively. The beach and the frontal dunes have had significant sand erosion, while the inner dunes gained sand during the measurement period. Vegetated areas remained unchanged due to the impact of vegetation in stabilizing the movement of the dunes. Formby beach had a volume loss of about 907,000 m3 in the last 21 years, while the dunes had a volume increase of about 1,049,000 m3 over the same period. The total volume of the entire dune system, consisting of both the beach and dune areas, remained unchanged, which indicates that the growth of the inland dunes is fed by sand from the beach. All the volumetric changes occurred due to sand redistribution within the system, with erosion along the beach, and deposition and erosion in the dune areas.
Sonoran Desert Ecosystem transformation by a C4 grass without the grass/fire cycle
Aim: Biological invasions facilitate ecosystem transformation by altering the structure and function, diversity, dominance and disturbance regimes. A classic case is the grass-fire cycle in which grass invasion increases the frequency, scale and/or intensity of wildfires and promotes the continued invasion of invasive grasses. Despite wide acceptance of the grass-fire cycle, questions linger about the relative roles that interspecific plant competition and fire play in ecosystem transformations. Location: Sonoran Desert Arizona Upland of the Santa Catalina Mountains, Arizona, USA. Methods: We measured species cover, density and saguaro (Carnegiea gigantea) size structure along gradients of Vennisetum aliare invasion at 10 unburned/ungrazed P. ciliare patches. Regression models quantified differences in diversity, cover and density with respect to P. ciliare cover, and residence time and a Fisher's exact test detected demographic changes in saguaro populations. Because P. ciliare may have initially invaded locations that were both more invasible and less diverse, we ran analyses with and without the plots in which initial infestations were located. Results: Richness and diversity decreased with P. ciliare cover as did cover and density of most dominant species. Richness and diversity declined with increasing time since invasion, suggesting an ongoing transformation. The proportion of old-to-young Carnegiea gigantea was significantly lower in plots with dominant P. ciliare cover. Main conclusions: Rich desert scrub (15–25 species per plot) was transformed into depauperate grassland (2–5 species per plot) within 20 years following P. ciliare invasion without changes to the fire regime. While the onset of a grassfire cycle may drive ecosystem change in the later stages and larger scales of grass invasions of arid lands, competition by P. ciliare can drive small-scale transformations earlier in the invasion. Linking competition-induced transformation rates with spatially explicit models of spread may be necessary for predicting landscape-level impacts on ecosystem processes in advance of a grass–fire cycle.