Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
64 result(s) for "Marshall, Jamie E."
Sort by:
Structure of the C1r–C1s interaction of the C1 complex of complement activation
The multiprotein complex C1 initiates the classical pathway of complement activation on binding to antibody–antigen complexes, pathogen surfaces, apoptotic cells, and polyanionic structures. It is formed from the recognition subcomponent C1q and a tetramer of proteases C1r₂C1s₂ as a Ca2+-dependent complex. Here we have determined the structure of a complex between the CUB1-EGF-CUB2 fragments of C1r and C1s to reveal the C1r–C1s interaction that forms the core of C1. Both fragments are L-shaped and interlock to form a compact antiparallel heterodimer with a Ca2+ from each subcomponent at the interface. Contacts, involving all three domains of each protease, are more extensive than those of C1r or C1s homodimers, explaining why heterocomplexes form preferentially. The available structural and biophysical data support a model of C1r₂C1s₂ in which two C1r-C1s dimers are linked via the catalytic domains of C1r. They are incompatible with a recent model in which the N-terminal domains of C1r and C1s form a fixed tetramer. On binding to C1q, the proteases become more compact, with the C1r-C1s dimers at the center and the six collagenous stems of C1q arranged around the perimeter. Activation is likely driven by separation of the C1r-C1s dimer pairs when C1q binds to a surface. Considerable flexibility in C1s likely facilitates C1 complex formation, activation of C1s by C1r, and binding and activation of downstream substrates C4 and C4b-bound C2 to initiate the reaction cascade.
Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation
Complement component C1, the complex that initiates the classical pathway of complement activation, is a 790-kDa assembly formed from the target-recognition subcomponent C1q and the modular proteases C1r and C1s. The proteases are elongated tetramers that become more compact when they bind to the collagen-like domains of C1q. Here, we describe a series of structures that reveal how the subcomponents associate to form C1. A complex between C1s and a collagen-like peptide containing the C1r/C1s-binding motif of C1q shows that the collagen binds to a shallow groove via a critical lysine side chain that contacts Ca ²⁺-coordinating residues. The data explain the Ca ²⁺-dependent binding mechanism, which is conserved in C1r and also in mannan-binding lectin-associated serine proteases, the serine proteases of the lectin pathway activation complexes. In an accompanying structure, C1s forms a compact ring-shaped tetramer featuring a unique head-to-tail interaction at its center that replicates the likely arrangement of C1r/C1s polypeptides in the C1 complex. Additional structures reveal how C1s polypeptides are positioned to enable activation by C1r and interaction with the substrate C4 inside the cage-like assembly formed by the collagenous stems of C1q. Together with previously determined structures of C1r fragments, the results reported here provide a structural basis for understanding the early steps of complement activation via the classical pathway.
The Crystal Structure of Pneumolysin at 2.0 Å Resolution Reveals the Molecular Packing of the Pre-pore Complex
Pneumolysin is a cholesterol-dependent cytolysin (CDC) and virulence factor of Streptococcus pneumoniae . It kills cells by forming pores assembled from oligomeric rings in cholesterol-containing membranes. Cryo-EM has revealed the structures of the membrane-surface bound pre-pore and inserted-pore oligomers, however the molecular contacts that mediate these oligomers are unknown because high-resolution information is not available. Here we have determined the crystal structure of full-length pneumolysin at 1.98 Å resolution. In the structure, crystal contacts demonstrate the likely interactions that enable polymerisation on the cell membrane and the molecular packing of the pre-pore complex. The hemolytic activity is abrogated in mutants that disrupt these intermolecular contacts, highlighting their importance during pore formation. An additional crystal structure of the membrane-binding domain alone suggests that changes in the conformation of a tryptophan rich-loop at the base of the toxin promote monomer-monomer interactions upon membrane binding by creating new contacts. Notably, residues at the interface are conserved in other members of the CDC family, suggesting a common mechanism for pore and pre-pore assembly.
Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome
Background Collectin-K1 (CL-K1, or CL-11) is a multifunctional Ca 2+ -dependent lectin with roles in innate immunity, apoptosis and embryogenesis. It binds to carbohydrates on pathogens to activate the lectin pathway of complement and together with its associated serine protease MASP-3 serves as a guidance cue for neural crest development. High serum levels are associated with disseminated intravascular coagulation, where spontaneous clotting can lead to multiple organ failure. Autosomal mutations in the CL-K1 or MASP-3 genes cause a developmental disorder called 3MC (Carnevale, Mingarelli, Malpuech and Michels) syndrome, characterised by facial, genital, renal and limb abnormalities. One of these mutations (Gly 204 Ser in the CL-K1 gene) is associated with undetectable levels of protein in the serum of affected individuals. Results In this study, we show that CL-K1 primarily targets a subset of high-mannose oligosaccharides present on both self- and non-self structures, and provide the structural basis for its ligand specificity. We also demonstrate that three disease-associated mutations prevent secretion of CL-K1 from mammalian cells, accounting for the protein deficiency observed in patients. Interestingly, none of the mutations prevent folding or oligomerization of recombinant fragments containing the mutations in vitro . Instead, they prevent Ca 2+ binding by the carbohydrate-recognition domains of CL-K1. We propose that failure to bind Ca 2+ during biosynthesis leads to structural defects that prevent secretion of CL-K1, thus providing a molecular explanation of the genetic disorder. Conclusions We have established the sugar specificity of CL-K1 and demonstrated that it targets high-mannose oligosaccharides on self- and non-self structures via an extended binding site which recognises the terminal two mannose residues of the carbohydrate ligand. We have also shown that mutations associated with a rare developmental disorder called 3MC syndrome prevent the secretion of CL-K1, probably as a result of structural defects caused by disruption of Ca 2+ binding during biosynthesis.
REPLY TO MORTENSEN ET AL
In reply to a comment of their study, Almitairi et al explain their model of zymogen C1. The model was assembled from overlapping crystal structures with constraints imposed by known interactions. The starting point was the protease subcomponent, C1r2C1s2, which comprises two antiparallel C1r-C1s dimers (mediated via CUB1-EGF-CUB2 contacts) linked through a central interaction between the CCP1-CCP2-SP domains of C1r. During C1 assembly, C1r2C1s2 folds-up, so the CUB1-EGF-CUB2 domains bind to the collagenous stems of C1q. Almitairi et al propose that C1r-C1r interactions are maintained in zymogen C1, preventing one C1r polypeptide from activating its partner. Activation is driven by separation of C1r arms when C1q binds to a surface. Their model is compatible with solution, structural, and kinetic data, suggesting intracomplex activation, and incorporates all known interactions: C1r CCP1-CCP2-SP dimers, C1r/C1s CUB1-EGF-CUB2 dimers, and CUB-C1q contacts.
Landscape of X chromosome inactivation across human tissues
Multiple transcriptome approaches, including single-cell sequencing, demonstrate that escape from X chromosome inactivation is widespread and occasionally variable between cells, chromosomes, and tissues, resulting in sex-biased expression of at least 60 genes and potentially contributing to sex-specific differences in health and disease. Genetic effects on gene expression across human tissues The GTEx (Genotype-Tissue Expression) Consortium has established a reference catalogue and associated tissue biobank for gene-expression levels across individuals for diverse tissues of the human body, with a broad sampling of normal, non-diseased human tissues from postmortem donors. The consortium now presents the deepest survey of gene expression across multiple tissues and individuals to date, encompassing 7,051 samples from 449 donors across 44 human tissues. Barbara Engelhardt and colleagues characterize the relationship between genetic variation and gene expression, and find that most genes are regulated by genetic variation near to the affected gene. In accompanying GTEx studies, Alexis Battle, Stephen Montgomery and colleagues examine the effect of rare genetic variation on gene expression across human tissues, Daniel MacArthur and colleagues systematically survey the landscape of X chromosome inactivation in human tissues, and Jin Billy Li and colleagues provide a comprehensive cross-species analysis of adenosine-to-inosine RNA editing in mammals. In an accompanying News & Views, Michelle Ward and Yoav Gilad put the latest results in context and discuss how these findings are helping to crack the regulatory code of the human genome. X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of ‘escape’ from inactivation varying between genes and individuals 1 , 2 . The extent to which XCI is shared between cells and tissues remains poorly characterized 3 , 4 , as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression 5 and phenotypic traits 6 . Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity 6 , 7 . Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.
Riparian Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation?
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure and sensitivity to climatic stimuli, and their history of degradation. Others have highlighted the probable resilience of riparian ecosystems to climate change as a result of their evolution under high levels of climatic and environmental variability. We synthesize current knowledge of the vulnerability of riparian ecosystems to climate change by assessing the potential exposure, sensitivity, and adaptive capacity of their key components and processes, as well as ecosystem functions, goods and services, to projected global climatic changes. We review key pathways for ecological and human adaptation for the maintenance, restoration and enhancement of riparian ecosystem functions, goods and services and present emerging principles for planned adaptation. Our synthesis suggests that, in the absence of adaptation, riparian ecosystems are likely to be highly vulnerable to climate change impacts. However, given the critical role of riparian ecosystem functions in landscapes, as well as the strong links between riparian ecosystems and human well-being, considerable means, motives and opportunities for strategically planned adaptation to climate change also exist. The need for planned adaptation of and for riparian ecosystems is likely to be strengthened as the importance of many riparian ecosystem functions, goods and services will grow under a changing climate. Consequently, riparian ecosystems are likely to become adaptation 'hotspots' as the century unfolds.
CD30 and ALK combination therapy has high therapeutic potency in RANBP2-ALK-rearranged epithelioid inflammatory myofibroblastic sarcoma
Background Epithelioid inflammatory myofibroblastic sarcoma (eIMS) is characterised by perinuclear ALK localisation, CD30 expression and early relapse despite crizotinib treatment. We aimed to identify therapies to prevent and/or treat ALK inhibitor resistance. Methods Malignant ascites, from an eIMS patient at diagnosis and following multiple relapses, were used to generate matched diagnosis and relapse xenografts. Results Xenografts were validated by confirmation of RANBP2-ALK rearrangement, perinuclear ALK localisation and CD30 expression. Although brentuximab-vedotin (BV) demonstrated single-agent activity, tumours regrew during BV therapy. BV resistance was associated with reduced CD30 expression and induction of ABCB1. BV resistance was reversed in vitro by tariquidar, but combination BV and tariquidar treatment only briefly slowed xenograft growth compared with BV alone. Combining BV with either crizotinib or ceritinib resulted in marked tumour shrinkage in both xenograft models, and resulted in prolonged tumour-free survival in the diagnosis compared with the relapse xenograft. Conclusions CD30 is a therapeutic target in eIMS. BV efficacy is limited by the rapid emergence of resistance. Prolonged survival with combination ALK and CD30-targeted-therapy in the diagnosis model provides the rationale to trial this combination in eIMS patients at diagnosis. This combination could also be considered for other CD30-positive, ALK -rearranged malignancies.
Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma
Background While most pediatric sarcomas respond to front-line therapy, some bone sarcomas do not show radiographic response like soft-tissue sarcomas (rhabdomyosarccomas) but do show 90% necrosis. Though, new therapies are urgently needed to improve survival and quality of life in pediatric patients with sarcomas. Complex chromosomal aberrations such as amplifications and deletions of DNA sequences are frequently observed in pediatric sarcomas. Evaluation of copy number variations (CNVs) associated with pediatric sarcoma patients at the time of diagnosis or following therapy offers an opportunity to assess dysregulated molecular targets and signaling pathways that may drive sarcoma development, progression, or relapse. The objective of this study was to utilize publicly available data sets to identify potential predictive biomarkers of chemotherapeutic response in pediatric Osteosarcoma (OS), Rhabdomyosarcoma (RMS) and Ewing’s Sarcoma Family of Tumors (ESFTs) based on CNVs following chemotherapy (OS n  = 117, RMS n  = 64, ESFTs n  = 25 tumor biopsies). Methods There were 206 CNV profiles derived from pediatric sarcoma biopsies collected from the public databases TARGET and NCBI-Gene Expression Omnibus (GEO). Through our comparative genomic analyses of OS, RMS, and ESFTs and 22,255 healthy individuals called from the Database of Genomic Variants (DGV), we identified CNVs (amplifications and deletions) pattern of genomic instability in these pediatric sarcomas. By integrating CNVs of Cancer Cell Line Encyclopedia (CCLE) identified in the pool of genes with drug-response data from sarcoma cell lines ( n  = 27) from Cancer Therapeutics Response Portal (CTRP) Version 2, potential predictive biomarkers of therapeutic response were identified. Results Genes associated with survival and/recurrence of these sarcomas with statistical significance were found on long arm of chromosome 8 and smaller aberrations were also identified at chromosomes 1q, 12q and x in OS, RMS, and ESFTs. A pool of 63 genes that harbored amplifications and/or deletions were frequently associated with recurrence across OS, RMS, and ESFTs. Correlation analysis of CNVs from CCLE with drug-response data of CTRP in 27 sarcoma cell lines, 33 CNVs out of 63 genes correlated with either sensitivity or resistance to 17 chemotherapies from which actionable CNV signatures such as IGF1R, MYC, MAPK1, ATF1, and MDM2 were identified. These CNV signatures could potentially be used to delineate patient populations that will respond versus those that will not respond to a particular chemotherapy. Conclusions The large-scale analyses of CNV-drug screening provides a platform to evaluate genetic alterations across aggressive pediatric sarcomas. Additionally, this study provides novel insights into the potential utilization of CNVs as not only prognostic but also as predictive biomarkers of therapeutic response. Information obtained in this study may help guide and prioritize patient-specific therapeutic options in pediatric bone and soft-tissue sarcomas.
Defining ecosystem thresholds for human activities and environmental pressures in the California Current
The oceans are changing more rapidly than ever before. Unprecedented climatic variability is interacting with unmistakable long‐term trends, all against a backdrop of intensifying human activities. What remains unclear, however, is how to evaluate whether conditions have changed sufficiently to provoke major responses of species, habitats, and communities. We developed a framework based on multimodel inference to define ecosystem‐based thresholds for human and environmental pressures in the California Current marine ecosystem. To demonstrate how to apply the framework, we explored two decades of data using gradient forest and generalized additive model analyses, screening for nonlinearities and potential threshold responses of ecosystem states (n = 9) across environmental (n = 6) and human (n = 10) pressures. These analyses identified the existence of threshold responses of five ecosystem states to four environmental and two human pressures. Both methods agreed on threshold relationships in two cases: (1) the winter copepod anomaly and habitat modification, and (2) sea lion pup production and the summer mode of the Pacific Decadal Oscillation (PDO). Considered collectively, however, these alternative analytical approaches imply that as many as five of the nine ecosystem states may exhibit threshold changes in response to negative PDO values in the summer (copepods, scavengers, groundfish, and marine mammals). This result is consistent with the idea that the influence of the PDO extends across multiple trophic levels, but extends current knowledge by defining the nonlinear nature of these responses. This research provides a new way to interpret changes in the intensities of human and environmental pressures as they relate to the ecological integrity of the California Current ecosystem. These insights can be used to make more informed assessments of when and under what conditions intervention, preparation, and mitigation may enhance progress toward ecosystem‐based management goals.