Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Marsolo, Keith"
Sort by:
PCORnet® 2020: current state, accomplishments, and future directions
To describe PCORnet, a clinical research network developed for patient-centered outcomes research on a national scale. Descriptive study of the current state and future directions for PCORnet. We conducted cross-sectional analyses of the health systems and patient populations of the 9 Clinical Research Networks and 2 Health Plan Research Networks that are part of PCORnet. Within the Clinical Research Networks, electronic health data are currently collected from 337 hospitals, 169,695 physicians, 3,564 primary care practices, 338 emergency departments, and 1,024 community clinics. Patients can be recruited for prospective studies from any of these clinical sites. The Clinical Research Networks have accumulated data from 80 million patients with at least one visit from 2009 to 2018. The PCORnet Health Plan Research Network population of individuals with a valid enrollment segment from 2009 to 2019 exceeds 60 million individuals, who on average have 2.63 years of follow-up. PCORnet’s infrastructure comprises clinical data from a diverse cohort of patients and has the capacity to rapidly access these patient populations for pragmatic clinical trials, epidemiological research, and patient-centered research on rare diseases. •PCORnet is a national network-of-networks developed to conduct patient-centered outcomes research.•There are nine Clinical Research Networks and two Health Plan Research Networks within PCORnet.•The Clinical Research Networks have collected EHR data for a cohort of 80 million individuals, and the Health Plan Network have collected enrollment and claims files on over 60 million individuals.•PCORnet infrastructure can support large-scale pragmatic clinical trials and observational research using its distributed data network.
Participant choices for return of genomic results in the eMERGE Network
Purpose Secondary findings are typically offered in an all or none fashion when sequencing is used for clinical purposes. This study aims to describe the process of offering categorical and granular choices for results in a large research consortium. Methods Within the third phase of the electronic MEdical Records and GEnomics (eMERGE) Network, several sites implemented studies that allowed participants to choose the type of results they wanted to receive from a multigene sequencing panel. Sites were surveyed to capture the details of the implementation protocols and results of these choices. Results Across the ten eMERGE sites, 4664 participants including adolescents and adults were offered some type of choice. Categories of choices offered and methods for selecting categories varied. Most participants (94.5%) chose to learn all genetic results, while 5.5% chose subsets of results. Several sites allowed participants to change their choices at various time points, and 0.5% of participants made changes. Conclusion Offering choices that include learning some results is important and should be a dynamic process to allow for changes in scientific knowledge, participant age group, and individual preference.
Broadening the reach of the FDA Sentinel system: A roadmap for integrating electronic health record data in a causal analysis framework
The Sentinel System is a major component of the United States Food and Drug Administration’s (FDA) approach to active medical product safety surveillance. While Sentinel has historically relied on large quantities of health insurance claims data, leveraging longitudinal electronic health records (EHRs) that contain more detailed clinical information, as structured and unstructured features, may address some of the current gaps in capabilities. We identify key challenges when using EHR data to investigate medical product safety in a scalable and accelerated way, outline potential solutions, and describe the Sentinel Innovation Center’s initiatives to put solutions into practice by expanding and strengthening the existing system with a query-ready, large-scale data infrastructure of linked EHR and claims data. We describe our initiatives in four strategic priority areas: (1) data infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics, with the goal of incorporating emerging data science innovations to maximize the utility of EHR data for medical product safety surveillance.
Public Health Surveillance in Electronic Health Records: Lessons From PCORnet
PCORnet, the National Patient-Centered Clinical Research Network, is a large research network of health systems that map clinical data to a standardized data model. In 2018, we expanded existing infrastructure to facilitate use for public health surveillance. We describe benefits and challenges of using PCORnet for surveillance and describe case studies. In 2018, infrastructure enhancements included addition of a table to store patients' residential zip codes and expansion of a modular program to generate population health statistics across conditions. Chronic disease surveillance case studies conducted in 2019 assessed atrial fibrillation (AF) and cirrhosis. In April 2020, PCORnet established an infrastructure to support COVID-19 surveillance with institutions frequently updating their electronic health record data. By August 2023, 53 PCORnet sites (84%) had a 5-digit zip code available on at least 95% of their patient populations. Among 148,223 newly diagnosed AF patients eligible for oral anticoagulant (OAC) therapy, 43.3% were on any OAC (17.8% warfarin, 28.5% any novel oral anticoagulant) within a year of the AF diagnosis. Among 60,268 patients with cirrhosis (2015-2019), common documented etiologies included unknown (48%), hepatitis C infection (23%), and alcohol use (22%). During October 2022 through December 2023, across 34 institutions, the proportion of COVID-19 patients who were cared for in the inpatient setting was 9.1% among 887,051 adults aged 20 years or older and 6.0% among 139,148 children younger than 20 years. PCORnet provides important data that may augment traditional public health surveillance programs across diverse conditions. PCORnet affords longitudinal population health assessments among large catchments of the population with clinical, treatment, and geographic information, with capabilities to deliver rapid information needed during public health emergencies.
Establishing a framework for privacy-preserving record linkage among electronic health record and administrative claims databases within PCORnet®, the National Patient-Centered Clinical Research Network
Objective The aim of this study was to determine whether a secure, privacy-preserving record linkage (PPRL) methodology can be implemented in a scalable manner for use in a large national clinical research network. Results We established the governance and technical capacity to support the use of PPRL across the National Patient-Centered Clinical Research Network (PCORnet ® ). As a pilot, four sites used the Datavant software to transform patient personally identifiable information (PII) into de-identified tokens. We queried the sites for patients with a clinical encounter in 2018 or 2019 and matched their tokens to determine whether overlap existed. We described patient overlap among the sites and generated a “deduplicated” table of patient demographic characteristics. Overlapping patients were found in 3 of the 6 site-pairs. Following deduplication, the total patient count was 3,108,515 (0.11% reduction), with the largest reduction in count for patients with an “Other/Missing” value for Sex; from 198 to 163 (17.6% reduction). The PPRL solution successfully links patients across data sources using distributed queries without directly accessing patient PII. The overlap queries and analysis performed in this pilot is being replicated across the full network to provide additional insight into patient linkages among a distributed research network.
Optimizing data integration in trials that use EHR data: lessons learned from a multi-center randomized clinical trial
Background Despite great promise, trials that ascertain patient clinical data from electronic health records (EHR), referred to here as “EHR-sourced” trials, are limited by uncertainty about how existing trial sites and infrastructure can be best used to operationalize study goals. Evidence is needed to support the practical use of EHRs in contemporary clinical trial settings. Main text We describe a demonstration project that used EHR data to complement data collected for a contemporary multi-center pharmaceutical industry outcomes trial, and how a central coordinating center supported participating sites through the technical, governance, and operational aspects of this type of activity. We discuss operational considerations related to site selection, data extraction, site performance, and data transfer and quality review, and we outline challenges and lessons learned. We surveyed potential sites and used their responses to assess feasibility, determine the potential capabilities of sites and choose an appropriate data extraction strategy. We designed a flexible, multimodal approach for data extraction, enabling each site to either leverage an existing data source, create a new research datamart, or send all data to the central coordinating center to produce the requisite data elements. We evaluated site performance, as reflected by the speed of contracting and IRB approval, total patients enrolled, enrollment yield, data quality, and compared performance by data collection strategy. Conclusion While broadening the type of sites able to participate in EHR-sourced trials may lead to greater generalizability and improved enrollment, sites with fewer technical resources may require additional support to participate. Central coordinating center support is essential to facilitate the execution of operational processes. Future work should focus on sharing lessons learned and creating reusable tools to facilitate participation of heterogeneous trial sites.
Assessing and improving research readiness in PCORnet
We describe the steps taken to assess and improve the research readiness of data within PCORnet®, specifically focusing on the results of the PCORnet data curation process between Cycle 7 (October 2019) and Cycle 16 (October 2024). We describe the process for extending the PCORnet® CDM and for creating data checks. We highlight growth in the number of records available across PCORnet between data curation Cycles 7 and 16 (e.g., diagnoses increasing from ∼3.7B to ∼6.9B and laboratory results from ∼7.7B to ∼15.1B among legacy DataMarts), present the current list of data checks and describe performance of the network. We highlight examples of data checks with relatively stable performance (e.g., future dates), those where performance has improved (e.g., RxNorm mapping), and others performance is more variable (e.g., persistence of records). Studies are a crucial source of information on the design of new data checks. The attention of PCORnet partners is focused primarily on those metrics that are generally modifiable. A transparent data curation process is an essential component of PCORnet, allowing network partners to learn from one another, while also informing the decisions of study investigators on which sites to include in their projects. The quality issues that exist within PCORnet stem from the way that data are captured within healthcare generally. We have been able to make to make great strides on improving data quality and research readiness. Many of the techniques piloted within PCORnet will be broadly applicable to other efforts.
Enhancing Postmarketing Surveillance of Medical Products With Large Language Models
The Sentinel System is a key component of the US Food and Drug Administration (FDA) postmarketing safety surveillance commitment and uses clinical health care data to conduct analyses to inform drug labeling and safety communications, FDA advisory committee meetings, and other regulatory decisions. However, observational data are frequently deemed insufficient for reliable evaluation of safety concerns owing to limitations in underlying data or methodology. Advances in large language models (LLMs) provide new opportunities to address some of these limitations. However, careful consideration is necessary for how and where LLMs can be effectively deployed for these purposes. LLMs may provide new avenues to support signal-identification activities to identify novel adverse event signals from narrative text of electronic health records. These algorithms may be used to support epidemiologic investigations examining the causal relationship between exposure to a medical product and an adverse event through development of probabilistic phenotyping of health outcomes of interest and extraction of information related to important confounding factors. LLMs may perform like traditional natural language processing tools by annotating text with controlled vocabularies with additional tailored training activities. LLMs offer opportunities for enhancing information extraction from adverse event reports, medical literature, and other biomedical knowledge sources. There are several challenges that must be considered when leveraging LLMs for postmarket surveillance. Prompt engineering is needed to ensure that LLM-extracted associations are accurate and specific. LLMs require extensive infrastructure to use, which many health care systems lack, and this can impact diversity, equity, and inclusion, and result in obscuring significant adverse event patterns in some populations. LLMs are known to generate nonfactual statements, which could lead to false positive signals and downstream evaluation activities by the FDA and other entities, incurring substantial cost. LLMs represent a novel paradigm that may facilitate generation of information to support medical product postmarket surveillance activities that have not been possible. However, additional work is required to ensure LLMs can be used in a fair and equitable manner, minimize false positive findings, and support the necessary rigor of signal detection needed for regulatory activities.
Approaches to Facilitate Institutional Review Board Approval of Multicenter Research Studies
Background and Objectives: Gaining Institutional Review Board (IRB) approval for a multicenter research study can be a lengthy and time-consuming process. It can increase the complexity of consent forms, decreasing patient understanding and lowering recruitment numbers. It also leads to increased costs through the duplication of effort. This paper examines some of the strategies used to streamline the IRB review process for multicenter studies and provides examples used by 2 existing multicenter comparative effectiveness research networks. Methods: A literature search was conducted to identify sources that described the challenges and potential strategies to facilitate multicenter IRB approval. The most promising avenues were identified and included in this review. Phone interviews were conducted with the Principal Investigators and Project Managers of 2 successful multicenter research networks to learn their \"keys to success\" and their lessons learned. Results: Three strategies were identified that held the most promise: working with IRBs before submission, the use of central and/or federated IRBs, and the establishment of an umbrella protocol. Each of these strategies was used to some degree by the case study projects. Conclusions: Although the approaches documented here can help streamline the IRB approval process, they are not a \"silver bullet.\" Because some of these approaches are still relatively new, empirical data are sparse. However, it is believed that they will significantly reduce the administrative burden of the project as a whole and lead to a decrease in the overall time to protocol approval.
A GWAS Study on Liver Function Test Using eMERGE Network Participants
Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations. The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC). Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10-8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15). Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.