Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Martínez-Castillo, Jaime"
Sort by:
Triboelectric and Piezoelectric Nanogenerators for Self-Powered Healthcare Monitoring Devices: Operating Principles, Challenges, and Perspectives
The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.
Consequences of introgression and gene flow on the genetic structure and diversity of Lima bean ( Phaseolus lunatus L.) in its Mesoamerican diversity area
We evaluated the role of gene flow and wild-crop introgression on the structure and genetic diversity of Lima bean ( Phaseolus lunatus ) in the Yucatan Peninsula, an important Mesoamerican diversity area for this crop, using a genotyping-by-sequencing approach (15,168 SNP markers) and two scales. At the local scale, STRUCTURE and NGSEP analyses showed predominantly crop-to-wild introgression, but also evidence of a bidirectional gene flow in the two wild-weedy-crop complexes studied (Itzinté and Dzitnup). The ABBA-BABA tests showed a higher introgression in Itzinté (the older complex) than in Dzitnup (the younger one); at the allelic level, the wild-crop introgression in Itzinté was similar in both directions, in Dzitnup it was higher from crop-to-wild; and at the chromosomal level, introgression in Itzinté was from wild-to-crop, whereas in Dzitnup it occured in the opposite direction. Also, we found H E values slightly higher in the domesticated accessions than in the wild ones, in both complexes (Itzinté: wild = 0.31, domesticated = 0.34; Dzinup: wild = 0.27, domesticated = 0.36), but % P and π estimators were higher in the wild accessions than in the domesticated ones. At a regional scale, STRUCTURE and MIGRATE showed a low gene flow, predominantly from crop-to-wild; and STRUCTURE, Neighbor-Joining and PCoA analyses indicated the existence of two wild groups and one domesticated group, with a marked genetic structure based in the existence of domesticated MI and wild MII gene pools. Also, at the regional scale, we found a higher genetic diversity in the wild accessions than in the domesticated ones, in all estimators used ( e.g. , H E = 0.27 and H E = 0.17, respectively). Our results indicate that gene flow and introgression are playing an important role at the local scale, but its consequences on the structure and genetic diversity of the Lima bean are not clearly reflected at the regional scale, where diversity patterns between wild and domesticated populations could be reflecting historical events.
Simplified Models to Assess the Mechanical Performance Parameters of Stents
Ischemic heart disease remains a leading cause of mortality worldwide, which has promoted extensive therapeutic efforts. Stenting has emerged as the primary intervention, particularly among individuals aged 70 years and older. The geometric specifications of stents must align with various mechanical performance criteria outlined by regulatory agencies such as the Food and Drug Administration (FDA). Finite element method (FEM) analysis and computational fluid dynamics (CFD) serve as essential tools to assess the mechanical performance parameters of stents. However, the growing complexity of the numerical models presents significant challenges. Herein, we propose a method to determine the mechanical performance parameters of stents using a simplified FEM model comprising solid and shell elements. In addition, a baseline model of a stent is developed and validated with experimental data, considering parameters such as foreshortening, radial recoil, radial recoil index, and radial stiffness of stents. The results of the simplified FEM model agree well with the baseline model, decreasing up to 80% in computational time. This method can be employed to design stents with specific mechanical performance parameters that satisfy the requirements of each patient.
Determining relevant traits for selecting landrace accessions of Phaseolus lunatus L. for insect resistance
Plant-insect interactions are a determining factor for sustainable crop production. Although plants can resist or tolerate herbivorous insects to varying degrees, even with the use of pesticides, insects can reduce plant net productivity by as much as 20%, so sustainable strategies for pest control with less dependence on chemicals are needed. Selecting plants with optimal resistance and photosynthetic traits can help minimize damage and maintain productivity. Here, 27 landrace accessions of lima beans, Phaseolus lunatus L., from the Yucatan Peninsula were evaluated in the field for morphological resistance traits, photosynthetic characteristics, insect damage and seed yield. Variation was found in physical leaf traits (number, area, and dry mass of leaves; trichome density, specific leaf thickness and hardness) and in physiological traits (photosynthetic rate, stomatal conductance, intercellular carbon, water-use efficiency, and transpiration). Five accessions (JMC1325, JMC1288, JMC1339, JMC1208 and JMC1264) had the lowest index for cumulative damage with the highest seed yield, although RDA analysis uncovered two accessions (JMC1339, JMC1288) with strong positive association of seed yield and the cumulative damage index with leaf production, specific leaf area (SLA) and total leaf area. Leaf traits, including SLA and total leaf area are important drivers for optimizing seed yield. This study identified 12 important morphological and physiological leaf traits for selecting landrace accessions of P. lunatus for high yields (regardless of damage level) to achieve sustainable, environmentally safe crop production.
The Hemodynamic Mass Action of a Central Pattern Generator
The hemodynamic response is a neurovascular and metabolic process in which there is rapid delivery of blood flow to a neuronal tissue in response to neuronal activation. The functional magnetic resonance imaging (fMRI) and the functional near-infrared spectroscopy (fNIRS), for instance, are based on the physiological principles of such hemodynamic responses. Both techniques allow the mapping of active neuronal regions in which the neurovascular and metabolic events are occurring. However, although both techniques have revolutionized the neurosciences, they are mostly employed for neuroimaging of the human brain but not for the spinal cord during functional tasks. Moreover, little is known about other techniques measuring the hemodynamic response in the spinal cord. The purpose of the present study was to show for the first time that a simple optical system termed direct current photoplethysmography (DC-PPG) can be employed to detect hemodynamic responses of the spinal cord and the brainstem during the functional activation of the spinal central pattern generator (CPG). In particular, we positioned two DC-PPG systems directly on the brainstem and spinal cord during fictive scratching in the cat. The optical DC-PPG systems allowed the trial-by-trial recording of massive hemodynamic signals. We found that the \"strength\" of the flexor-plus-extensor motoneuron activities during motor episodes of fictive scratching was significantly correlated to the \"strengths\" of the brainstem and spinal DC-PPG signals. Because the DC-PPG was robustly detected in real-time, we claim that such a functional signal reflects the hemodynamic mass action of the brainstem and spinal cord associated with the CPG motor action. Our findings shed light on an unexplored hemodynamic observable of the spinal CPGs, providing a proof of concept that the DC-PPG can be used for the assessment of the integrity of the human CPGs.
Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: Implications for conservation and the domestication of the species
• Premise of the study: Understanding genetic structure in wild relatives of a crop is important for crop improvement and conservation. Recently, two gene pools (MI and MII) were reported in wild Lima bean (Phaseolus lunatus) from Mexico, a domestication center of Mesoamerican landraces. However, the evidence was based on limited genomic sampling. Here we sought to confirm the existence of these two gene pools by increased genome and population sampling.• Methods: We characterized 67 wild populations of P. lunatus from Mexico with 10 microsatellite loci and studied the genetic structure by means of AMOVA, cluster analyses, assignment tests, and a georeferenced map.• Key results: AMOVA indicated that most of the variation is found among populations (77%) rather than within populations (23%). Assignment tests were key to confirm not only the presence of the two gene pools (MI and MII) in Mexico, but also to propose the possible existence of two subgroups within MI (MIa and MIb). While MI and MII are mainly divergent geographically, MIa and MIb overlap in their distribution. Admixed individuals, which may represent cases of gene flow among gene pools, were detected.• Conclusions: Our results show that the genetic structure of wild Lima bean in Mexico is more complex than previously thought and propose the presence of three gene pools (MIa, MIb, and MII), each one possessing relatively high levels of genetic diversity. We still need additional evidence, however, to confirm without doubt the split of the gene pool MI into subgroups MIa and MIb.
Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: A comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana
Traditional farming communities frequently maintain high levels of agrobiodiversity, so understanding their agricultural practices is a priority for biodiversity conservation. The cultural origin of agave spirits (mezcals) from west-central Mexico is in the southern part of the state of Jalisco where traditional farmers cultivate more than 20 landraces of Agave angustifolia Haw. in agroecosystems that include in situ management of wild populations. These systems, rooted in a 9000-year-old tradition of using agaves as food in Mesoamerica, are endangered by the expansion of commercial monoculture plantations of the blue agave variety (A. tequilana Weber var. Azul), the only agave certified for sale as tequila, the best-known mezcal. Using intersimple sequence repeats and Bayesian estimators of diversity and structure, we found that A. angustifolia traditional landraces had a genetic diversity (HBT = 0.442) similar to its wild populations (HBT = 0.428) and a higher genetic structure ({theta}B = 0.405; {theta}B =0. 212). In contrast, the genetic diversity in the blue agave commercial system (HB = 0.118) was 73% lower. Changes to agave spirits certification laws to allow the conservation of current genetic, ecological and cultural diversity can play a key role in the preservation of the traditional agroecosystems.
Evolution and Domestication of Lima Bean in Mexico: Evidence from Ribosomal DNA
Phaseolus lunatus L., Lima bean, has been domesticated at least twice in the Americas, once in the Andean region and at another time in Mesoamerica; however, the domestication history of this crop in the latter region remains unclear. In this study, a phylogeographic analysis of DNA polymorphisms in the internal transcribed spacer (ITS) region of the ribosomal DNA from a collection of wild and domesticated accessions was applied to establish where and how many times in Mesoamerica Lima bean was domesticated. The results showed evidence for two wild Mesoamerican gene pools with contrasting geographical distributions. While the MI gene pool occurs in central western Mexico, including the Pacific coastal range, the MII gene pool is widespread and occurs toward the Gulf of Mexico, the Yucatan peninsula, and Central and South America. In a cluster analysis, all Mesoamerican landraces clustered together with wild accessions from the MI gene pool (L haplotype) suggesting a unique domestication event in central western Mexico. The most likely domestication region is an area of the states of Nayarit–Jalisco or Guerrero–Oaxaca and not areas such as the Peninsula of Yucatan where the crop is currently widespread and diverse. A strong founder effect due to domestication was quantified and several recently diversified haplotypes were identified. A hypothesis about possible dispersal routes of the crop within Mesoamerica is proposed as well as an apparent late adoption of the crop into the milpa system.
The Enhanced Fixed Point Method: An Extremely Simple Procedure to Accelerate the Convergence of the Fixed Point Method to Solve Nonlinear Algebraic Equations
This work proposes the Enhanced Fixed Point Method (EFPM) as a straightforward modification to the problem of finding an exact or approximate solution for a linear or nonlinear algebraic equation. The proposal consists of providing a versatile method that is easy to employ and systematic. Therefore, it is expected that this work contributes to breaking the paradigm that an effective modification for a known method has to be necessarily long and complicated. As a matter of fact, the method expresses an algebraic equation in terms of the same equation but multiplied for an adequate factor, which most of the times is just a simple numeric factor. The main idea is modifying the original equation, slightly changing it for others in such a way that both have the same solution. Next, the modified equation is expressed as a fixed point problem and the proposed parameters are employed to accelerate the convergence of the fixed point problem for the original equation. Since the Newton method results from a possible fixed point problem of an algebraic equation, we will see that it is relatively easy to get modified versions of the Newton method with orders of convergence major than two. We will see in this work the convenience of this procedure.
Measurements of the Magnetic Field Variations Related with the Size of V-Shaped Notches in Steel Pipes
Gas and oil pipeline networks require periodic inspections to detect cracks or notches that can cause industrial accidents and environmental contamination. For these inspections, the metal magnetic memory (MMM) method could be used as a non-destructive testing (NDT) technique, which does not need expensive equipment and high-skilled operators. However, more investigations are required to quantify the size and shape of defects in ferromagnetic pipes using the MMM signals. We present experimental measurements of MMM signals around five small V-shaped notches of an ASTM-A36 steel pipe using a three-axis magnetoresistive sensor. The V-shaped notches have different values of depth (500 µm, 1000 µm, 1500 µm, 2000 µm and 2500 µm) and width (1000 µm, 1500 µm, 2000 µm, 3000 µm and 3500 µm). We measured the variations of tangential and normal MMM signals around these defects and their relationships with the size of each defect. The first V-notch defect (500 μm depth and 1000 μm width) registers variations of the tangential and normal MMM signals of 14.32 μT ± 1.62 μT and 27.95 μT ± 1.14 μT, respectively. On the other hand, the fifth V-notch defect (2500 μm depth and 3500 μm width) has variations of the tangential and normal MMM signals of 68.75 μT ± 1.10 μT and 71.37 μT ± 0.72 μT, respectively. The MMM method could be used for real-time monitoring of V-shaped notches in steel pipes. This method does not require special treatment of steel pipes.