Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,177
result(s) for
"Marta, H"
Sort by:
The molecular biology of fruity and floral aromas in beer and other alcoholic beverages
by
de Carvalho, Bruna Trindade
,
Holt, Sylvester
,
Thevelein, Johan M
in
Activating transcription factor 1
,
Alcoholic beverages
,
Alcoholic Beverages - analysis
2019
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Journal Article
Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma
2024
Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.
Immune surveillance is critical to prevent the development and progression of cutaneous squamous cell carcinoma (cSCC). Here, the authors show that epithelial-mesenchymal plasticity in cancer cells is associated with changes in their immune checkpoint ligand profile during mouse cSCC progression, which dictates differential responses to immune checkpoint blockade.
Journal Article
Mechanism of replication origin melting nucleated by CMG helicase assembly
by
Gross, Marta H.
,
Sousa, Joana
,
Greiwe, Julia F.
in
101/28
,
631/337/151/2355
,
631/45/535/1258/1259
2022
The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45–MCM–GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown
1
. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.
Cryo-electron microscopy structures of the sequential assembly of the CMG replicative helicase on a chromatinized origin of replication provide insights into the mechanism through which DNA melting is initiated by ATP binding.
Journal Article
A roadmap towards manufacturing extracellular vesicles for cardiac repair
2024
Despite the heterogeneity associated with extracellular vesicle (EV) biogenesis pathways and the physiological state of the EV parental cells, standardization of EV manufacturing workflows could contribute to increase intra- and inter-batch reproducibility.Reaching effective EV doses for clinical use in cardiac regenerative settings requires large-scale platforms for EV production and isolation and/or strategies that maximize EV secretion per cell.While bioreactors – such as stirred-tank or vertical-wheel bioreactors – are envisioned as scalable platforms to sustain cell secretion of EVs, membrane-based processes can allow continuous and large-scale isolation of EVs.Both single-vesicle analysis and omics approaches can be relevant tools to dissect the mechanism of action of EVs in cardiac repair.
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Journal Article
Pterospartum tridentatum Liqueur Using Spirits Aged with Almond Shells: Chemical Characterization and Phenolic Profile
2023
With great cultural significance, spirits and distillate beverages constitute an important niche market in Europe. The development of new food products, particularly for the functionalization of these beverages, is increasing exponentially. The present work aimed to develop a new wine spirit beverage aged with almond shells and flowers of P. tridentatum for further characterization of bioactive and phenolic compounds, coupled with a sensorial study to evaluate the acceptance of this new product by the market. Twenty-one phenolic compounds were identified, mainly isoflavonoids and O- and C-glycosylated flavonoids, especially in P. tridentatum flowers, indicating that it is a highly aromatizing agent. The developed liqueur and wine spirits (almonds and flowers) showed distinct physicochemical properties, with the last two samples showing greater appreciation and purchase intention by consumers due to their sweetness and smoothness. The most promising results were found for the carqueja flower, which should be further investigated in an industrial context to contribute to its valorization in its regions of origin, such as Beira Interior and Trás-os-Montes (Portugal).
Journal Article
Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial
by
Fusco, Solange R. G.
,
Pedrosa, Tatiana
,
Rojo, Priscila T.
in
631/250/2152/2153/1291
,
631/250/590/1883
,
631/326/596/4130
2021
CoronaVac, an inactivated SARS-CoV-2 vaccine, has been approved for emergency use in several countries. However, its immunogenicity in immunocompromised individuals has not been well established. We initiated a prospective phase 4 controlled trial (no. NCT04754698, CoronavRheum) in 910 adults with autoimmune rheumatic diseases (ARD) and 182 age- and sex-frequency-matched healthy adults (control group, CG), who received two doses of CoronaVac. The primary outcomes were reduction of ≥15% in both anti-SARS-CoV-2 IgG seroconversion (SC) and neutralizing antibody (NAb) positivity 6 weeks (day 69 (D69)) after the second dose in the ARD group compared with that in the CG. Secondary outcomes were IgG SC and NAb positivity at D28, IgG titers and neutralizing activity at D28 and D69 and vaccine safety. Prespecified endpoints were met, with lower anti-SARS-Cov-2 IgG SC (70.4 versus 95.5%,
P
< 0.001) and NAb positivity (56.3 versus 79.3%,
P
< 0.001) at D69 in the ARD group than in the CG. Moreover, IgG titers (12.1 versus 29.7,
P
< 0.001) and median neutralization activity (58.7 versus 64.5%,
P
= 0.013) were also lower at D69 in patients with ARD. At D28, patients with ARD presented with lower IgG frequency (18.7 versus 34.6%,
P
< 0.001) and NAb positivity (20.6 versus 36.3%,
P
< 0.001) than that of the CG. There were no moderate/severe adverse events. These data support the use of CoronaVac in patients with ARD, suggesting reduced but acceptable short-term immunogenicity. The trial is still ongoing to evaluate the long-term effectiveness/immunogenicity.
In a large prospective phase 4 trial, vaccination with CoronaVac, an inactivated SARS-CoV-2 vaccine, elicited significantly lower virus-specific IgG antibodies and neutralizing antibodies in patients with autoimmune rheumatic diseases than in age- and sex-matched healthy control trial participants.
Journal Article
Parental genetically predicted liability for coronary heart disease and risk of adverse pregnancy outcomes: a cohort study
by
Åsvold, Bjørn Olav
,
Lawlor, Deborah A.
,
Brumpton, Ben
in
Adverse pregnancy outcomes
,
Biomedicine
,
Birth
2024
Background
Adverse pregnancy outcomes (APO) may unmask or exacerbate a woman’s underlying risk for coronary heart disease (CHD). We estimated associations of maternal and paternal genetically predicted liability for CHD with lifelong risk of APOs. We hypothesized that associations would be found for women, but not their male partners (negative controls).
Methods
We studied up to 83,969 women (and up to 55,568 male partners) from the Norwegian Mother, Father and Child Cohort Study or the Trøndelag Health Study with genotyping data and lifetime history of any APO in their pregnancies (1967–2019) in the Medical Birth Registry of Norway (miscarriage, stillbirth, hypertensive disorders of pregnancy, gestational diabetes, small for gestational age, large for gestational age, and spontaneous preterm birth). Maternal and paternal genetic risk scores (GRS) for CHD were generated using 148 gene variants (
p
-value < 5 × 10
−8
, not in linkage disequilibrium). Associations between GRS for CHD and each APO were determined using logistic regression, adjusting for genomic principal components, in each cohort separately, and combined using fixed effects meta-analysis.
Results
One standard deviation higher GRS for CHD in women was related to increased risk of any hypertensive disorders of pregnancy (odds ratio [OR] 1.08, 95% confidence interval [CI] 1.05–1.10), pre-eclampsia (OR 1.08, 95% CI 1.05–1.11), and small for gestational age (OR 1.04, 95% CI 1.01–1.06). Imprecise associations with lower odds of large for gestational age (OR 0.98, 95% CI 0.96–1.00) and higher odds of stillbirth (OR 1.04, 95% CI 0.98–1.11) were suggested. These findings remained consistent after adjusting for number of total pregnancies and the male partners’ GRS and restricting analyses to stable couples. Associations for other APOs were close to the null. There was weak evidence of an association of paternal genetically predicted liability for CHD with spontaneous preterm birth in female partners (OR 1.02, 95% CI 0.99–1.05), but not with other APOs.
Conclusions
Hypertensive disorders of pregnancy, small for gestational age, and stillbirth may unmask women with a genetically predicted propensity for CHD. The association of paternal genetically predicted CHD risk with spontaneous preterm birth in female partners needs further exploration.
Journal Article
Low Fat Yoghurts Produced with Different Protein Levels and Alternative Natural Sweeteners
2024
The food industry is looking for substitutes for sucrose in food items due to the excessive consumption of products with added sugar and the demand for healthier products. Alternative natural sweeteners can help achieve this goal. Different types of low-fat yoghurts (1% fat), with low-protein and high-protein levels (3% and 4.5–6.5% protein, respectively), were produced using alternative natural sweeteners. The low-protein yoghurts were made with stevia (0.03% w/w) or agave syrup (4.5% w/w). The high-protein yoghurts were made with stevia (0.04% w/w), xylitol (6% w/w) or honey (6% w/w). Sucrose (6% w/w) was used as a control in both trials. pH and titratable acidity, CIEL*a*b* color parameters, syneresis index, rheology and the texture profile of the low-fat yoghurts were evaluated over refrigerated storage. All products underwent sensory evaluation by an untrained panel. The high-protein yoghurts were found to be more acidic (>1% as lactic acid), had a lower syneresis index (between 2.1 and 16.2%) and a better consistency (stronger gel structure) than the low-protein yoghurts. In terms of rheological parameters, stevia-sweetened yoghurts scored higher than the other sweetened yoghurts, showing a better gel structure. The different sweeteners tested did not significantly affect the sensory properties of the yoghurts, although the high-protein yoghurts scored higher for most of the attributes evaluated. Overall, consumers preferred stevia-sweetened yoghurts to yoghurts sweetened with sucrose or agave for the low-protein yoghurts. Of the tested formulations, those containing high protein with the alternative natural sweetener xylitol received higher scores in all attributes. These results reveal the potential of the tested natural sweeteners as sucrose substitutes, while contributing to improving the nutritional value of yoghurts.
Journal Article
Whey Protein Concentrate/Isolate Biofunctional Films Modified with Melanin from Watermelon (Citrullus lanatus) Seeds
by
Kostek, Mateusz
,
Sobolewski, Peter
,
Henriques, Marta H. F.
in
Antimicrobial agents
,
Antioxidants
,
Biocompatibility
2020
Valorization of food industry waste and plant residues represents an attractive path towards obtaining biodegradable materials and achieving “zero waste” goals. Here, melanin was isolated from watermelon (Citrullus lanatus) seeds and used as a modifier for whey protein concentrate and isolate films (WPC and WPI) at two concentrations (0.1% and 0.5%). The modification with melanin enhanced the ultraviolet (UV) blocking, water vapor barrier, swelling, and mechanical properties of the WPC/WPI films, in addition to affecting the apparent color. The modified WPC/WPI films also exhibited high antioxidant activity, but no cytotoxicity. Overall, the effects were melanin concentration-dependent. Thus, melanin from watermelon seeds can be used as a functional modifier to develop bioactive biopolymer films with good potential to be exploited in food packaging and biomedical applications.
Journal Article
Understanding Mycotoxin Contamination Across the Food Chain in Brazil: Challenges and Opportunities
by
Taniwaki, Marta H.
,
Copetti, Marina V.
,
Iamanaka, Beatriz T.
in
Aflatoxins
,
Agribusiness
,
Bertholletia - chemistry
2019
Brazil is one of the largest food producers and exporters in the world. In the late 20th century, the European Union program for the harmonization of regulations for contaminants in food, including mycotoxins, led to the examination of mycotoxin contamination in foods at a global level. The problem of the rejection of food by the European Union and other countries became a Brazilian national priority because of economic and food safety aspects. Ochratoxin A in coffee and cocoa and aflatoxins in Brazil nuts are examples of the impact of technical trade barriers on Brazilian foods. To overcome these threats, several strategies were undertaken by Brazilian and international organizations. In this context, the Codex Commission on Food Contaminants (CCCF) has emerged as a forum to discuss with more transparency issues related to mycotoxins, focusing on establishing maximum levels and codes of practices for some commodities and mycotoxins to ensure fair trade and food safety. Our experience in investigating and understanding mycotoxin contamination across the food chains in Brazil has contributed nationally and internationally to providing some answers to these issues.
Journal Article